Metamath Proof Explorer


Theorem iistmd

Description: The closed unit interval forms a topological monoid under multiplication. (Contributed by Thierry Arnoux, 25-Mar-2017)

Ref Expression
Hypothesis df-iis 𝐼 = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) )
Assertion iistmd 𝐼 ∈ TopMnd

Proof

Step Hyp Ref Expression
1 df-iis 𝐼 = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) )
2 cnnrg fld ∈ NrmRing
3 nrgtrg ( ℂfld ∈ NrmRing → ℂfld ∈ TopRing )
4 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
5 4 trgtmd ( ℂfld ∈ TopRing → ( mulGrp ‘ ℂfld ) ∈ TopMnd )
6 2 3 5 mp2b ( mulGrp ‘ ℂfld ) ∈ TopMnd
7 unitsscn ( 0 [,] 1 ) ⊆ ℂ
8 1elunit 1 ∈ ( 0 [,] 1 )
9 iimulcl ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) )
10 9 rgen2 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 )
11 nrgring ( ℂfld ∈ NrmRing → ℂfld ∈ Ring )
12 4 ringmgp ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd )
13 2 11 12 mp2b ( mulGrp ‘ ℂfld ) ∈ Mnd
14 cnfldbas ℂ = ( Base ‘ ℂfld )
15 4 14 mgpbas ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) )
16 cnfld1 1 = ( 1r ‘ ℂfld )
17 4 16 ringidval 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) )
18 cnfldmul · = ( .r ‘ ℂfld )
19 4 18 mgpplusg · = ( +g ‘ ( mulGrp ‘ ℂfld ) )
20 15 17 19 issubm ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ( 0 [,] 1 ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,] 1 ) ⊆ ℂ ∧ 1 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) ) ) )
21 13 20 ax-mp ( ( 0 [,] 1 ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,] 1 ) ⊆ ℂ ∧ 1 ∈ ( 0 [,] 1 ) ∧ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,] 1 ) ) )
22 7 8 10 21 mpbir3an ( 0 [,] 1 ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) )
23 1 submtmd ( ( ( mulGrp ‘ ℂfld ) ∈ TopMnd ∧ ( 0 [,] 1 ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) → 𝐼 ∈ TopMnd )
24 6 22 23 mp2an 𝐼 ∈ TopMnd