| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) |
| 2 |
|
xrge0iifhmeo.k |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 3 |
|
xrge0pluscn.1 |
|- .+ = ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) |
| 4 |
1 2
|
xrge0iifhmeo |
|- F e. ( II Homeo J ) |
| 5 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
| 6 |
|
xpss12 |
|- ( ( ( 0 [,] 1 ) C_ CC /\ ( 0 [,] 1 ) C_ CC ) -> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( CC X. CC ) ) |
| 7 |
5 5 6
|
mp2an |
|- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( CC X. CC ) |
| 8 |
|
ax-mulf |
|- x. : ( CC X. CC ) --> CC |
| 9 |
|
ffn |
|- ( x. : ( CC X. CC ) --> CC -> x. Fn ( CC X. CC ) ) |
| 10 |
|
fnssresb |
|- ( x. Fn ( CC X. CC ) -> ( ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( CC X. CC ) ) ) |
| 11 |
8 9 10
|
mp2b |
|- ( ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( CC X. CC ) ) |
| 12 |
7 11
|
mpbir |
|- ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) |
| 13 |
|
ovres |
|- ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( u ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) v ) = ( u x. v ) ) |
| 14 |
|
iimulcl |
|- ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( u x. v ) e. ( 0 [,] 1 ) ) |
| 15 |
13 14
|
eqeltrd |
|- ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( u ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) v ) e. ( 0 [,] 1 ) ) |
| 16 |
15
|
rgen2 |
|- A. u e. ( 0 [,] 1 ) A. v e. ( 0 [,] 1 ) ( u ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) v ) e. ( 0 [,] 1 ) |
| 17 |
|
ffnov |
|- ( ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) <-> ( ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) /\ A. u e. ( 0 [,] 1 ) A. v e. ( 0 [,] 1 ) ( u ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) v ) e. ( 0 [,] 1 ) ) ) |
| 18 |
12 16 17
|
mpbir2an |
|- ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) |
| 19 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 20 |
|
xpss12 |
|- ( ( ( 0 [,] +oo ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) -> ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) C_ ( RR* X. RR* ) ) |
| 21 |
19 19 20
|
mp2an |
|- ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) C_ ( RR* X. RR* ) |
| 22 |
|
xaddf |
|- +e : ( RR* X. RR* ) --> RR* |
| 23 |
|
ffn |
|- ( +e : ( RR* X. RR* ) --> RR* -> +e Fn ( RR* X. RR* ) ) |
| 24 |
|
fnssresb |
|- ( +e Fn ( RR* X. RR* ) -> ( ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) Fn ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) <-> ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) C_ ( RR* X. RR* ) ) ) |
| 25 |
22 23 24
|
mp2b |
|- ( ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) Fn ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) <-> ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) C_ ( RR* X. RR* ) ) |
| 26 |
21 25
|
mpbir |
|- ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) Fn ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) |
| 27 |
3
|
fneq1i |
|- ( .+ Fn ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) <-> ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) Fn ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) |
| 28 |
26 27
|
mpbir |
|- .+ Fn ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) |
| 29 |
3
|
oveqi |
|- ( a .+ b ) = ( a ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) b ) |
| 30 |
|
ovres |
|- ( ( a e. ( 0 [,] +oo ) /\ b e. ( 0 [,] +oo ) ) -> ( a ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) b ) = ( a +e b ) ) |
| 31 |
|
ge0xaddcl |
|- ( ( a e. ( 0 [,] +oo ) /\ b e. ( 0 [,] +oo ) ) -> ( a +e b ) e. ( 0 [,] +oo ) ) |
| 32 |
30 31
|
eqeltrd |
|- ( ( a e. ( 0 [,] +oo ) /\ b e. ( 0 [,] +oo ) ) -> ( a ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) b ) e. ( 0 [,] +oo ) ) |
| 33 |
29 32
|
eqeltrid |
|- ( ( a e. ( 0 [,] +oo ) /\ b e. ( 0 [,] +oo ) ) -> ( a .+ b ) e. ( 0 [,] +oo ) ) |
| 34 |
33
|
rgen2 |
|- A. a e. ( 0 [,] +oo ) A. b e. ( 0 [,] +oo ) ( a .+ b ) e. ( 0 [,] +oo ) |
| 35 |
|
ffnov |
|- ( .+ : ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) --> ( 0 [,] +oo ) <-> ( .+ Fn ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) /\ A. a e. ( 0 [,] +oo ) A. b e. ( 0 [,] +oo ) ( a .+ b ) e. ( 0 [,] +oo ) ) ) |
| 36 |
28 34 35
|
mpbir2an |
|- .+ : ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) --> ( 0 [,] +oo ) |
| 37 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 38 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
| 39 |
|
resttopon |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ( 0 [,] +oo ) C_ RR* ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) ) |
| 40 |
38 19 39
|
mp2an |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) |
| 41 |
2 40
|
eqeltri |
|- J e. ( TopOn ` ( 0 [,] +oo ) ) |
| 42 |
3
|
oveqi |
|- ( ( F ` u ) .+ ( F ` v ) ) = ( ( F ` u ) ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( F ` v ) ) |
| 43 |
1
|
xrge0iifcnv |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 0 , ( exp ` -u y ) ) ) ) |
| 44 |
43
|
simpli |
|- F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) |
| 45 |
|
f1of |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) ) |
| 46 |
44 45
|
ax-mp |
|- F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) |
| 47 |
46
|
ffvelcdmi |
|- ( u e. ( 0 [,] 1 ) -> ( F ` u ) e. ( 0 [,] +oo ) ) |
| 48 |
46
|
ffvelcdmi |
|- ( v e. ( 0 [,] 1 ) -> ( F ` v ) e. ( 0 [,] +oo ) ) |
| 49 |
|
ovres |
|- ( ( ( F ` u ) e. ( 0 [,] +oo ) /\ ( F ` v ) e. ( 0 [,] +oo ) ) -> ( ( F ` u ) ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( F ` v ) ) = ( ( F ` u ) +e ( F ` v ) ) ) |
| 50 |
47 48 49
|
syl2an |
|- ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` u ) ( +e |` ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( F ` v ) ) = ( ( F ` u ) +e ( F ` v ) ) ) |
| 51 |
42 50
|
eqtrid |
|- ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` u ) .+ ( F ` v ) ) = ( ( F ` u ) +e ( F ` v ) ) ) |
| 52 |
1 2
|
xrge0iifhom |
|- ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( F ` ( u x. v ) ) = ( ( F ` u ) +e ( F ` v ) ) ) |
| 53 |
13
|
eqcomd |
|- ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( u x. v ) = ( u ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) v ) ) |
| 54 |
53
|
fveq2d |
|- ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( F ` ( u x. v ) ) = ( F ` ( u ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) v ) ) ) |
| 55 |
51 52 54
|
3eqtr2rd |
|- ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( F ` ( u ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) v ) ) = ( ( F ` u ) .+ ( F ` v ) ) ) |
| 56 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) = ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) |
| 57 |
56
|
iistmd |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) e. TopMnd |
| 58 |
|
cnfldex |
|- CCfld e. _V |
| 59 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
| 60 |
|
eqid |
|- ( CCfld |`s ( 0 [,] 1 ) ) = ( CCfld |`s ( 0 [,] 1 ) ) |
| 61 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 62 |
60 61
|
mgpress |
|- ( ( CCfld e. _V /\ ( 0 [,] 1 ) e. _V ) -> ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,] 1 ) ) ) ) |
| 63 |
58 59 62
|
mp2an |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,] 1 ) ) ) |
| 64 |
60
|
dfii4 |
|- II = ( TopOpen ` ( CCfld |`s ( 0 [,] 1 ) ) ) |
| 65 |
63 64
|
mgptopn |
|- II = ( TopOpen ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) |
| 66 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 67 |
61 66
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 68 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 69 |
61 68
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 70 |
8 9
|
ax-mp |
|- x. Fn ( CC X. CC ) |
| 71 |
67 56 69 70 5
|
ressplusf |
|- ( +f ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) = ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 72 |
71
|
eqcomi |
|- ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( +f ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) |
| 73 |
65 72
|
tmdcn |
|- ( ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) e. TopMnd -> ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( ( II tX II ) Cn II ) ) |
| 74 |
57 73
|
ax-mp |
|- ( x. |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( ( II tX II ) Cn II ) |
| 75 |
4 18 36 37 41 55 74
|
mndpluscn |
|- .+ e. ( ( J tX J ) Cn J ) |