| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndpluscn.f |
|- F e. ( J Homeo K ) |
| 2 |
|
mndpluscn.p |
|- .+ : ( B X. B ) --> B |
| 3 |
|
mndpluscn.t |
|- .* : ( C X. C ) --> C |
| 4 |
|
mndpluscn.j |
|- J e. ( TopOn ` B ) |
| 5 |
|
mndpluscn.k |
|- K e. ( TopOn ` C ) |
| 6 |
|
mndpluscn.h |
|- ( ( x e. B /\ y e. B ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .* ( F ` y ) ) ) |
| 7 |
|
mndpluscn.o |
|- .+ e. ( ( J tX J ) Cn J ) |
| 8 |
|
ffn |
|- ( .* : ( C X. C ) --> C -> .* Fn ( C X. C ) ) |
| 9 |
|
fnov |
|- ( .* Fn ( C X. C ) <-> .* = ( a e. C , b e. C |-> ( a .* b ) ) ) |
| 10 |
9
|
biimpi |
|- ( .* Fn ( C X. C ) -> .* = ( a e. C , b e. C |-> ( a .* b ) ) ) |
| 11 |
3 8 10
|
mp2b |
|- .* = ( a e. C , b e. C |-> ( a .* b ) ) |
| 12 |
4
|
toponunii |
|- B = U. J |
| 13 |
5
|
toponunii |
|- C = U. K |
| 14 |
12 13
|
hmeof1o |
|- ( F e. ( J Homeo K ) -> F : B -1-1-onto-> C ) |
| 15 |
1 14
|
ax-mp |
|- F : B -1-1-onto-> C |
| 16 |
|
f1ocnvdm |
|- ( ( F : B -1-1-onto-> C /\ a e. C ) -> ( `' F ` a ) e. B ) |
| 17 |
15 16
|
mpan |
|- ( a e. C -> ( `' F ` a ) e. B ) |
| 18 |
|
f1ocnvdm |
|- ( ( F : B -1-1-onto-> C /\ b e. C ) -> ( `' F ` b ) e. B ) |
| 19 |
15 18
|
mpan |
|- ( b e. C -> ( `' F ` b ) e. B ) |
| 20 |
17 19
|
anim12i |
|- ( ( a e. C /\ b e. C ) -> ( ( `' F ` a ) e. B /\ ( `' F ` b ) e. B ) ) |
| 21 |
6
|
rgen2 |
|- A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .* ( F ` y ) ) |
| 22 |
|
fvoveq1 |
|- ( x = ( `' F ` a ) -> ( F ` ( x .+ y ) ) = ( F ` ( ( `' F ` a ) .+ y ) ) ) |
| 23 |
|
fveq2 |
|- ( x = ( `' F ` a ) -> ( F ` x ) = ( F ` ( `' F ` a ) ) ) |
| 24 |
23
|
oveq1d |
|- ( x = ( `' F ` a ) -> ( ( F ` x ) .* ( F ` y ) ) = ( ( F ` ( `' F ` a ) ) .* ( F ` y ) ) ) |
| 25 |
22 24
|
eqeq12d |
|- ( x = ( `' F ` a ) -> ( ( F ` ( x .+ y ) ) = ( ( F ` x ) .* ( F ` y ) ) <-> ( F ` ( ( `' F ` a ) .+ y ) ) = ( ( F ` ( `' F ` a ) ) .* ( F ` y ) ) ) ) |
| 26 |
|
oveq2 |
|- ( y = ( `' F ` b ) -> ( ( `' F ` a ) .+ y ) = ( ( `' F ` a ) .+ ( `' F ` b ) ) ) |
| 27 |
26
|
fveq2d |
|- ( y = ( `' F ` b ) -> ( F ` ( ( `' F ` a ) .+ y ) ) = ( F ` ( ( `' F ` a ) .+ ( `' F ` b ) ) ) ) |
| 28 |
|
fveq2 |
|- ( y = ( `' F ` b ) -> ( F ` y ) = ( F ` ( `' F ` b ) ) ) |
| 29 |
28
|
oveq2d |
|- ( y = ( `' F ` b ) -> ( ( F ` ( `' F ` a ) ) .* ( F ` y ) ) = ( ( F ` ( `' F ` a ) ) .* ( F ` ( `' F ` b ) ) ) ) |
| 30 |
27 29
|
eqeq12d |
|- ( y = ( `' F ` b ) -> ( ( F ` ( ( `' F ` a ) .+ y ) ) = ( ( F ` ( `' F ` a ) ) .* ( F ` y ) ) <-> ( F ` ( ( `' F ` a ) .+ ( `' F ` b ) ) ) = ( ( F ` ( `' F ` a ) ) .* ( F ` ( `' F ` b ) ) ) ) ) |
| 31 |
25 30
|
rspc2va |
|- ( ( ( ( `' F ` a ) e. B /\ ( `' F ` b ) e. B ) /\ A. x e. B A. y e. B ( F ` ( x .+ y ) ) = ( ( F ` x ) .* ( F ` y ) ) ) -> ( F ` ( ( `' F ` a ) .+ ( `' F ` b ) ) ) = ( ( F ` ( `' F ` a ) ) .* ( F ` ( `' F ` b ) ) ) ) |
| 32 |
20 21 31
|
sylancl |
|- ( ( a e. C /\ b e. C ) -> ( F ` ( ( `' F ` a ) .+ ( `' F ` b ) ) ) = ( ( F ` ( `' F ` a ) ) .* ( F ` ( `' F ` b ) ) ) ) |
| 33 |
|
f1ocnvfv2 |
|- ( ( F : B -1-1-onto-> C /\ a e. C ) -> ( F ` ( `' F ` a ) ) = a ) |
| 34 |
15 33
|
mpan |
|- ( a e. C -> ( F ` ( `' F ` a ) ) = a ) |
| 35 |
|
f1ocnvfv2 |
|- ( ( F : B -1-1-onto-> C /\ b e. C ) -> ( F ` ( `' F ` b ) ) = b ) |
| 36 |
15 35
|
mpan |
|- ( b e. C -> ( F ` ( `' F ` b ) ) = b ) |
| 37 |
34 36
|
oveqan12d |
|- ( ( a e. C /\ b e. C ) -> ( ( F ` ( `' F ` a ) ) .* ( F ` ( `' F ` b ) ) ) = ( a .* b ) ) |
| 38 |
32 37
|
eqtr2d |
|- ( ( a e. C /\ b e. C ) -> ( a .* b ) = ( F ` ( ( `' F ` a ) .+ ( `' F ` b ) ) ) ) |
| 39 |
38
|
mpoeq3ia |
|- ( a e. C , b e. C |-> ( a .* b ) ) = ( a e. C , b e. C |-> ( F ` ( ( `' F ` a ) .+ ( `' F ` b ) ) ) ) |
| 40 |
11 39
|
eqtri |
|- .* = ( a e. C , b e. C |-> ( F ` ( ( `' F ` a ) .+ ( `' F ` b ) ) ) ) |
| 41 |
5
|
a1i |
|- ( T. -> K e. ( TopOn ` C ) ) |
| 42 |
41 41
|
cnmpt1st |
|- ( T. -> ( a e. C , b e. C |-> a ) e. ( ( K tX K ) Cn K ) ) |
| 43 |
|
hmeocnvcn |
|- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
| 44 |
1 43
|
mp1i |
|- ( T. -> `' F e. ( K Cn J ) ) |
| 45 |
41 41 42 44
|
cnmpt21f |
|- ( T. -> ( a e. C , b e. C |-> ( `' F ` a ) ) e. ( ( K tX K ) Cn J ) ) |
| 46 |
41 41
|
cnmpt2nd |
|- ( T. -> ( a e. C , b e. C |-> b ) e. ( ( K tX K ) Cn K ) ) |
| 47 |
41 41 46 44
|
cnmpt21f |
|- ( T. -> ( a e. C , b e. C |-> ( `' F ` b ) ) e. ( ( K tX K ) Cn J ) ) |
| 48 |
7
|
a1i |
|- ( T. -> .+ e. ( ( J tX J ) Cn J ) ) |
| 49 |
41 41 45 47 48
|
cnmpt22f |
|- ( T. -> ( a e. C , b e. C |-> ( ( `' F ` a ) .+ ( `' F ` b ) ) ) e. ( ( K tX K ) Cn J ) ) |
| 50 |
|
hmeocn |
|- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
| 51 |
1 50
|
mp1i |
|- ( T. -> F e. ( J Cn K ) ) |
| 52 |
41 41 49 51
|
cnmpt21f |
|- ( T. -> ( a e. C , b e. C |-> ( F ` ( ( `' F ` a ) .+ ( `' F ` b ) ) ) ) e. ( ( K tX K ) Cn K ) ) |
| 53 |
52
|
mptru |
|- ( a e. C , b e. C |-> ( F ` ( ( `' F ` a ) .+ ( `' F ` b ) ) ) ) e. ( ( K tX K ) Cn K ) |
| 54 |
40 53
|
eqeltri |
|- .* e. ( ( K tX K ) Cn K ) |