Step |
Hyp |
Ref |
Expression |
1 |
|
mhmhmeotmd.m |
|- F e. ( S MndHom T ) |
2 |
|
mhmhmeotmd.h |
|- F e. ( ( TopOpen ` S ) Homeo ( TopOpen ` T ) ) |
3 |
|
mhmhmeotmd.t |
|- S e. TopMnd |
4 |
|
mhmhmeotmd.s |
|- T e. TopSp |
5 |
|
mhmrcl2 |
|- ( F e. ( S MndHom T ) -> T e. Mnd ) |
6 |
1 5
|
ax-mp |
|- T e. Mnd |
7 |
|
mhmrcl1 |
|- ( F e. ( S MndHom T ) -> S e. Mnd ) |
8 |
1 7
|
ax-mp |
|- S e. Mnd |
9 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
10 |
|
eqid |
|- ( +f ` S ) = ( +f ` S ) |
11 |
9 10
|
mndplusf |
|- ( S e. Mnd -> ( +f ` S ) : ( ( Base ` S ) X. ( Base ` S ) ) --> ( Base ` S ) ) |
12 |
8 11
|
ax-mp |
|- ( +f ` S ) : ( ( Base ` S ) X. ( Base ` S ) ) --> ( Base ` S ) |
13 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
14 |
|
eqid |
|- ( +f ` T ) = ( +f ` T ) |
15 |
13 14
|
mndplusf |
|- ( T e. Mnd -> ( +f ` T ) : ( ( Base ` T ) X. ( Base ` T ) ) --> ( Base ` T ) ) |
16 |
6 15
|
ax-mp |
|- ( +f ` T ) : ( ( Base ` T ) X. ( Base ` T ) ) --> ( Base ` T ) |
17 |
|
eqid |
|- ( TopOpen ` S ) = ( TopOpen ` S ) |
18 |
17 9
|
tmdtopon |
|- ( S e. TopMnd -> ( TopOpen ` S ) e. ( TopOn ` ( Base ` S ) ) ) |
19 |
3 18
|
ax-mp |
|- ( TopOpen ` S ) e. ( TopOn ` ( Base ` S ) ) |
20 |
|
eqid |
|- ( TopOpen ` T ) = ( TopOpen ` T ) |
21 |
13 20
|
istps |
|- ( T e. TopSp <-> ( TopOpen ` T ) e. ( TopOn ` ( Base ` T ) ) ) |
22 |
4 21
|
mpbi |
|- ( TopOpen ` T ) e. ( TopOn ` ( Base ` T ) ) |
23 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
24 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
25 |
9 23 24
|
mhmlin |
|- ( ( F e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
26 |
1 25
|
mp3an1 |
|- ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
27 |
9 23 10
|
plusfval |
|- ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +f ` S ) y ) = ( x ( +g ` S ) y ) ) |
28 |
27
|
fveq2d |
|- ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +f ` S ) y ) ) = ( F ` ( x ( +g ` S ) y ) ) ) |
29 |
9 13
|
mhmf |
|- ( F e. ( S MndHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
30 |
1 29
|
ax-mp |
|- F : ( Base ` S ) --> ( Base ` T ) |
31 |
30
|
ffvelrni |
|- ( x e. ( Base ` S ) -> ( F ` x ) e. ( Base ` T ) ) |
32 |
30
|
ffvelrni |
|- ( y e. ( Base ` S ) -> ( F ` y ) e. ( Base ` T ) ) |
33 |
13 24 14
|
plusfval |
|- ( ( ( F ` x ) e. ( Base ` T ) /\ ( F ` y ) e. ( Base ` T ) ) -> ( ( F ` x ) ( +f ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
34 |
31 32 33
|
syl2an |
|- ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( ( F ` x ) ( +f ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
35 |
26 28 34
|
3eqtr4d |
|- ( ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +f ` S ) y ) ) = ( ( F ` x ) ( +f ` T ) ( F ` y ) ) ) |
36 |
17 10
|
tmdcn |
|- ( S e. TopMnd -> ( +f ` S ) e. ( ( ( TopOpen ` S ) tX ( TopOpen ` S ) ) Cn ( TopOpen ` S ) ) ) |
37 |
3 36
|
ax-mp |
|- ( +f ` S ) e. ( ( ( TopOpen ` S ) tX ( TopOpen ` S ) ) Cn ( TopOpen ` S ) ) |
38 |
2 12 16 19 22 35 37
|
mndpluscn |
|- ( +f ` T ) e. ( ( ( TopOpen ` T ) tX ( TopOpen ` T ) ) Cn ( TopOpen ` T ) ) |
39 |
14 20
|
istmd |
|- ( T e. TopMnd <-> ( T e. Mnd /\ T e. TopSp /\ ( +f ` T ) e. ( ( ( TopOpen ` T ) tX ( TopOpen ` T ) ) Cn ( TopOpen ` T ) ) ) ) |
40 |
6 4 38 39
|
mpbir3an |
|- T e. TopMnd |