Step |
Hyp |
Ref |
Expression |
1 |
|
mhmhmeotmd.m |
⊢ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) |
2 |
|
mhmhmeotmd.h |
⊢ 𝐹 ∈ ( ( TopOpen ‘ 𝑆 ) Homeo ( TopOpen ‘ 𝑇 ) ) |
3 |
|
mhmhmeotmd.t |
⊢ 𝑆 ∈ TopMnd |
4 |
|
mhmhmeotmd.s |
⊢ 𝑇 ∈ TopSp |
5 |
|
mhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑇 ∈ Mnd ) |
6 |
1 5
|
ax-mp |
⊢ 𝑇 ∈ Mnd |
7 |
|
mhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑆 ∈ Mnd ) |
8 |
1 7
|
ax-mp |
⊢ 𝑆 ∈ Mnd |
9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
10 |
|
eqid |
⊢ ( +𝑓 ‘ 𝑆 ) = ( +𝑓 ‘ 𝑆 ) |
11 |
9 10
|
mndplusf |
⊢ ( 𝑆 ∈ Mnd → ( +𝑓 ‘ 𝑆 ) : ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑆 ) ) ⟶ ( Base ‘ 𝑆 ) ) |
12 |
8 11
|
ax-mp |
⊢ ( +𝑓 ‘ 𝑆 ) : ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑆 ) ) ⟶ ( Base ‘ 𝑆 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
14 |
|
eqid |
⊢ ( +𝑓 ‘ 𝑇 ) = ( +𝑓 ‘ 𝑇 ) |
15 |
13 14
|
mndplusf |
⊢ ( 𝑇 ∈ Mnd → ( +𝑓 ‘ 𝑇 ) : ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ⟶ ( Base ‘ 𝑇 ) ) |
16 |
6 15
|
ax-mp |
⊢ ( +𝑓 ‘ 𝑇 ) : ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ⟶ ( Base ‘ 𝑇 ) |
17 |
|
eqid |
⊢ ( TopOpen ‘ 𝑆 ) = ( TopOpen ‘ 𝑆 ) |
18 |
17 9
|
tmdtopon |
⊢ ( 𝑆 ∈ TopMnd → ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
19 |
3 18
|
ax-mp |
⊢ ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) |
20 |
|
eqid |
⊢ ( TopOpen ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 ) |
21 |
13 20
|
istps |
⊢ ( 𝑇 ∈ TopSp ↔ ( TopOpen ‘ 𝑇 ) ∈ ( TopOn ‘ ( Base ‘ 𝑇 ) ) ) |
22 |
4 21
|
mpbi |
⊢ ( TopOpen ‘ 𝑇 ) ∈ ( TopOn ‘ ( Base ‘ 𝑇 ) ) |
23 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
25 |
9 23 24
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
26 |
1 25
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
27 |
9 23 10
|
plusfval |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +𝑓 ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +𝑓 ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
29 |
9 13
|
mhmf |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
30 |
1 29
|
ax-mp |
⊢ 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) |
31 |
30
|
ffvelrni |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑆 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
32 |
30
|
ffvelrni |
⊢ ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) |
33 |
13 24 14
|
plusfval |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +𝑓 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
34 |
31 32 33
|
syl2an |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +𝑓 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
35 |
26 28 34
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +𝑓 ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +𝑓 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
36 |
17 10
|
tmdcn |
⊢ ( 𝑆 ∈ TopMnd → ( +𝑓 ‘ 𝑆 ) ∈ ( ( ( TopOpen ‘ 𝑆 ) ×t ( TopOpen ‘ 𝑆 ) ) Cn ( TopOpen ‘ 𝑆 ) ) ) |
37 |
3 36
|
ax-mp |
⊢ ( +𝑓 ‘ 𝑆 ) ∈ ( ( ( TopOpen ‘ 𝑆 ) ×t ( TopOpen ‘ 𝑆 ) ) Cn ( TopOpen ‘ 𝑆 ) ) |
38 |
2 12 16 19 22 35 37
|
mndpluscn |
⊢ ( +𝑓 ‘ 𝑇 ) ∈ ( ( ( TopOpen ‘ 𝑇 ) ×t ( TopOpen ‘ 𝑇 ) ) Cn ( TopOpen ‘ 𝑇 ) ) |
39 |
14 20
|
istmd |
⊢ ( 𝑇 ∈ TopMnd ↔ ( 𝑇 ∈ Mnd ∧ 𝑇 ∈ TopSp ∧ ( +𝑓 ‘ 𝑇 ) ∈ ( ( ( TopOpen ‘ 𝑇 ) ×t ( TopOpen ‘ 𝑇 ) ) Cn ( TopOpen ‘ 𝑇 ) ) ) ) |
40 |
6 4 38 39
|
mpbir3an |
⊢ 𝑇 ∈ TopMnd |