Metamath Proof Explorer


Theorem mhmhmeotmd

Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017)

Ref Expression
Hypotheses mhmhmeotmd.m 𝐹 ∈ ( 𝑆 MndHom 𝑇 )
mhmhmeotmd.h 𝐹 ∈ ( ( TopOpen ‘ 𝑆 ) Homeo ( TopOpen ‘ 𝑇 ) )
mhmhmeotmd.t 𝑆 ∈ TopMnd
mhmhmeotmd.s 𝑇 ∈ TopSp
Assertion mhmhmeotmd 𝑇 ∈ TopMnd

Proof

Step Hyp Ref Expression
1 mhmhmeotmd.m 𝐹 ∈ ( 𝑆 MndHom 𝑇 )
2 mhmhmeotmd.h 𝐹 ∈ ( ( TopOpen ‘ 𝑆 ) Homeo ( TopOpen ‘ 𝑇 ) )
3 mhmhmeotmd.t 𝑆 ∈ TopMnd
4 mhmhmeotmd.s 𝑇 ∈ TopSp
5 mhmrcl2 ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑇 ∈ Mnd )
6 1 5 ax-mp 𝑇 ∈ Mnd
7 mhmrcl1 ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑆 ∈ Mnd )
8 1 7 ax-mp 𝑆 ∈ Mnd
9 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
10 eqid ( +𝑓𝑆 ) = ( +𝑓𝑆 )
11 9 10 mndplusf ( 𝑆 ∈ Mnd → ( +𝑓𝑆 ) : ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑆 ) ) ⟶ ( Base ‘ 𝑆 ) )
12 8 11 ax-mp ( +𝑓𝑆 ) : ( ( Base ‘ 𝑆 ) × ( Base ‘ 𝑆 ) ) ⟶ ( Base ‘ 𝑆 )
13 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
14 eqid ( +𝑓𝑇 ) = ( +𝑓𝑇 )
15 13 14 mndplusf ( 𝑇 ∈ Mnd → ( +𝑓𝑇 ) : ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ⟶ ( Base ‘ 𝑇 ) )
16 6 15 ax-mp ( +𝑓𝑇 ) : ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ⟶ ( Base ‘ 𝑇 )
17 eqid ( TopOpen ‘ 𝑆 ) = ( TopOpen ‘ 𝑆 )
18 17 9 tmdtopon ( 𝑆 ∈ TopMnd → ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) )
19 3 18 ax-mp ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) )
20 eqid ( TopOpen ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 )
21 13 20 istps ( 𝑇 ∈ TopSp ↔ ( TopOpen ‘ 𝑇 ) ∈ ( TopOn ‘ ( Base ‘ 𝑇 ) ) )
22 4 21 mpbi ( TopOpen ‘ 𝑇 ) ∈ ( TopOn ‘ ( Base ‘ 𝑇 ) )
23 eqid ( +g𝑆 ) = ( +g𝑆 )
24 eqid ( +g𝑇 ) = ( +g𝑇 )
25 9 23 24 mhmlin ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
26 1 25 mp3an1 ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
27 9 23 10 plusfval ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +𝑓𝑆 ) 𝑦 ) = ( 𝑥 ( +g𝑆 ) 𝑦 ) )
28 27 fveq2d ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +𝑓𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) )
29 9 13 mhmf ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) )
30 1 29 ax-mp 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )
31 30 ffvelrni ( 𝑥 ∈ ( Base ‘ 𝑆 ) → ( 𝐹𝑥 ) ∈ ( Base ‘ 𝑇 ) )
32 30 ffvelrni ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( 𝐹𝑦 ) ∈ ( Base ‘ 𝑇 ) )
33 13 24 14 plusfval ( ( ( 𝐹𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐹𝑥 ) ( +𝑓𝑇 ) ( 𝐹𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
34 31 32 33 syl2an ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹𝑥 ) ( +𝑓𝑇 ) ( 𝐹𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
35 26 28 34 3eqtr4d ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +𝑓𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +𝑓𝑇 ) ( 𝐹𝑦 ) ) )
36 17 10 tmdcn ( 𝑆 ∈ TopMnd → ( +𝑓𝑆 ) ∈ ( ( ( TopOpen ‘ 𝑆 ) ×t ( TopOpen ‘ 𝑆 ) ) Cn ( TopOpen ‘ 𝑆 ) ) )
37 3 36 ax-mp ( +𝑓𝑆 ) ∈ ( ( ( TopOpen ‘ 𝑆 ) ×t ( TopOpen ‘ 𝑆 ) ) Cn ( TopOpen ‘ 𝑆 ) )
38 2 12 16 19 22 35 37 mndpluscn ( +𝑓𝑇 ) ∈ ( ( ( TopOpen ‘ 𝑇 ) ×t ( TopOpen ‘ 𝑇 ) ) Cn ( TopOpen ‘ 𝑇 ) )
39 14 20 istmd ( 𝑇 ∈ TopMnd ↔ ( 𝑇 ∈ Mnd ∧ 𝑇 ∈ TopSp ∧ ( +𝑓𝑇 ) ∈ ( ( ( TopOpen ‘ 𝑇 ) ×t ( TopOpen ‘ 𝑇 ) ) Cn ( TopOpen ‘ 𝑇 ) ) ) )
40 6 4 38 39 mpbir3an 𝑇 ∈ TopMnd