| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrge0iifhmeo.1 |  |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) | 
						
							| 2 |  | 0xr |  |-  0 e. RR* | 
						
							| 3 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 4 |  | 0lepnf |  |-  0 <_ +oo | 
						
							| 5 |  | ubicc2 |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) | 
						
							| 6 | 2 3 4 5 | mp3an |  |-  +oo e. ( 0 [,] +oo ) | 
						
							| 7 | 6 | a1i |  |-  ( ( x e. ( 0 [,] 1 ) /\ x = 0 ) -> +oo e. ( 0 [,] +oo ) ) | 
						
							| 8 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 9 |  | uncom |  |-  ( { 0 } u. ( 0 (,] 1 ) ) = ( ( 0 (,] 1 ) u. { 0 } ) | 
						
							| 10 |  | 1xr |  |-  1 e. RR* | 
						
							| 11 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 12 |  | snunioc |  |-  ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) ) | 
						
							| 13 | 2 10 11 12 | mp3an |  |-  ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) | 
						
							| 14 | 9 13 | eqtr3i |  |-  ( ( 0 (,] 1 ) u. { 0 } ) = ( 0 [,] 1 ) | 
						
							| 15 | 14 | eleq2i |  |-  ( x e. ( ( 0 (,] 1 ) u. { 0 } ) <-> x e. ( 0 [,] 1 ) ) | 
						
							| 16 |  | elun |  |-  ( x e. ( ( 0 (,] 1 ) u. { 0 } ) <-> ( x e. ( 0 (,] 1 ) \/ x e. { 0 } ) ) | 
						
							| 17 | 15 16 | bitr3i |  |-  ( x e. ( 0 [,] 1 ) <-> ( x e. ( 0 (,] 1 ) \/ x e. { 0 } ) ) | 
						
							| 18 |  | pm2.53 |  |-  ( ( x e. ( 0 (,] 1 ) \/ x e. { 0 } ) -> ( -. x e. ( 0 (,] 1 ) -> x e. { 0 } ) ) | 
						
							| 19 | 17 18 | sylbi |  |-  ( x e. ( 0 [,] 1 ) -> ( -. x e. ( 0 (,] 1 ) -> x e. { 0 } ) ) | 
						
							| 20 |  | elsni |  |-  ( x e. { 0 } -> x = 0 ) | 
						
							| 21 | 19 20 | syl6 |  |-  ( x e. ( 0 [,] 1 ) -> ( -. x e. ( 0 (,] 1 ) -> x = 0 ) ) | 
						
							| 22 | 21 | con1d |  |-  ( x e. ( 0 [,] 1 ) -> ( -. x = 0 -> x e. ( 0 (,] 1 ) ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 0 ) -> x e. ( 0 (,] 1 ) ) | 
						
							| 24 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 25 |  | 1re |  |-  1 e. RR | 
						
							| 26 |  | ltpnf |  |-  ( 1 e. RR -> 1 < +oo ) | 
						
							| 27 | 25 26 | ax-mp |  |-  1 < +oo | 
						
							| 28 |  | iocssioo |  |-  ( ( ( 0 e. RR* /\ +oo e. RR* ) /\ ( 0 <_ 0 /\ 1 < +oo ) ) -> ( 0 (,] 1 ) C_ ( 0 (,) +oo ) ) | 
						
							| 29 | 2 3 24 27 28 | mp4an |  |-  ( 0 (,] 1 ) C_ ( 0 (,) +oo ) | 
						
							| 30 |  | ioorp |  |-  ( 0 (,) +oo ) = RR+ | 
						
							| 31 | 29 30 | sseqtri |  |-  ( 0 (,] 1 ) C_ RR+ | 
						
							| 32 | 31 | sseli |  |-  ( x e. ( 0 (,] 1 ) -> x e. RR+ ) | 
						
							| 33 | 32 | relogcld |  |-  ( x e. ( 0 (,] 1 ) -> ( log ` x ) e. RR ) | 
						
							| 34 | 33 | renegcld |  |-  ( x e. ( 0 (,] 1 ) -> -u ( log ` x ) e. RR ) | 
						
							| 35 | 34 | rexrd |  |-  ( x e. ( 0 (,] 1 ) -> -u ( log ` x ) e. RR* ) | 
						
							| 36 |  | elioc1 |  |-  ( ( 0 e. RR* /\ 1 e. RR* ) -> ( x e. ( 0 (,] 1 ) <-> ( x e. RR* /\ 0 < x /\ x <_ 1 ) ) ) | 
						
							| 37 | 2 10 36 | mp2an |  |-  ( x e. ( 0 (,] 1 ) <-> ( x e. RR* /\ 0 < x /\ x <_ 1 ) ) | 
						
							| 38 | 37 | simp3bi |  |-  ( x e. ( 0 (,] 1 ) -> x <_ 1 ) | 
						
							| 39 |  | 1rp |  |-  1 e. RR+ | 
						
							| 40 | 39 | a1i |  |-  ( x e. ( 0 (,] 1 ) -> 1 e. RR+ ) | 
						
							| 41 | 32 40 | logled |  |-  ( x e. ( 0 (,] 1 ) -> ( x <_ 1 <-> ( log ` x ) <_ ( log ` 1 ) ) ) | 
						
							| 42 | 38 41 | mpbid |  |-  ( x e. ( 0 (,] 1 ) -> ( log ` x ) <_ ( log ` 1 ) ) | 
						
							| 43 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 44 | 42 43 | breqtrdi |  |-  ( x e. ( 0 (,] 1 ) -> ( log ` x ) <_ 0 ) | 
						
							| 45 | 33 | le0neg1d |  |-  ( x e. ( 0 (,] 1 ) -> ( ( log ` x ) <_ 0 <-> 0 <_ -u ( log ` x ) ) ) | 
						
							| 46 | 44 45 | mpbid |  |-  ( x e. ( 0 (,] 1 ) -> 0 <_ -u ( log ` x ) ) | 
						
							| 47 |  | ltpnf |  |-  ( -u ( log ` x ) e. RR -> -u ( log ` x ) < +oo ) | 
						
							| 48 | 34 47 | syl |  |-  ( x e. ( 0 (,] 1 ) -> -u ( log ` x ) < +oo ) | 
						
							| 49 |  | elico1 |  |-  ( ( 0 e. RR* /\ +oo e. RR* ) -> ( -u ( log ` x ) e. ( 0 [,) +oo ) <-> ( -u ( log ` x ) e. RR* /\ 0 <_ -u ( log ` x ) /\ -u ( log ` x ) < +oo ) ) ) | 
						
							| 50 | 2 3 49 | mp2an |  |-  ( -u ( log ` x ) e. ( 0 [,) +oo ) <-> ( -u ( log ` x ) e. RR* /\ 0 <_ -u ( log ` x ) /\ -u ( log ` x ) < +oo ) ) | 
						
							| 51 | 35 46 48 50 | syl3anbrc |  |-  ( x e. ( 0 (,] 1 ) -> -u ( log ` x ) e. ( 0 [,) +oo ) ) | 
						
							| 52 | 23 51 | syl |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 0 ) -> -u ( log ` x ) e. ( 0 [,) +oo ) ) | 
						
							| 53 | 8 52 | sselid |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 0 ) -> -u ( log ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 54 | 7 53 | ifclda |  |-  ( x e. ( 0 [,] 1 ) -> if ( x = 0 , +oo , -u ( log ` x ) ) e. ( 0 [,] +oo ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( T. /\ x e. ( 0 [,] 1 ) ) -> if ( x = 0 , +oo , -u ( log ` x ) ) e. ( 0 [,] +oo ) ) | 
						
							| 56 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 57 | 56 | a1i |  |-  ( ( y e. ( 0 [,] +oo ) /\ y = +oo ) -> 0 e. ( 0 [,] 1 ) ) | 
						
							| 58 |  | iocssicc |  |-  ( 0 (,] 1 ) C_ ( 0 [,] 1 ) | 
						
							| 59 |  | snunico |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> ( ( 0 [,) +oo ) u. { +oo } ) = ( 0 [,] +oo ) ) | 
						
							| 60 | 2 3 4 59 | mp3an |  |-  ( ( 0 [,) +oo ) u. { +oo } ) = ( 0 [,] +oo ) | 
						
							| 61 | 60 | eleq2i |  |-  ( y e. ( ( 0 [,) +oo ) u. { +oo } ) <-> y e. ( 0 [,] +oo ) ) | 
						
							| 62 |  | elun |  |-  ( y e. ( ( 0 [,) +oo ) u. { +oo } ) <-> ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) ) | 
						
							| 63 | 61 62 | bitr3i |  |-  ( y e. ( 0 [,] +oo ) <-> ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) ) | 
						
							| 64 |  | pm2.53 |  |-  ( ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) -> ( -. y e. ( 0 [,) +oo ) -> y e. { +oo } ) ) | 
						
							| 65 | 63 64 | sylbi |  |-  ( y e. ( 0 [,] +oo ) -> ( -. y e. ( 0 [,) +oo ) -> y e. { +oo } ) ) | 
						
							| 66 |  | elsni |  |-  ( y e. { +oo } -> y = +oo ) | 
						
							| 67 | 65 66 | syl6 |  |-  ( y e. ( 0 [,] +oo ) -> ( -. y e. ( 0 [,) +oo ) -> y = +oo ) ) | 
						
							| 68 | 67 | con1d |  |-  ( y e. ( 0 [,] +oo ) -> ( -. y = +oo -> y e. ( 0 [,) +oo ) ) ) | 
						
							| 69 | 68 | imp |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> y e. ( 0 [,) +oo ) ) | 
						
							| 70 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 71 | 70 | sseli |  |-  ( y e. ( 0 [,) +oo ) -> y e. RR ) | 
						
							| 72 | 71 | renegcld |  |-  ( y e. ( 0 [,) +oo ) -> -u y e. RR ) | 
						
							| 73 | 72 | reefcld |  |-  ( y e. ( 0 [,) +oo ) -> ( exp ` -u y ) e. RR ) | 
						
							| 74 | 73 | rexrd |  |-  ( y e. ( 0 [,) +oo ) -> ( exp ` -u y ) e. RR* ) | 
						
							| 75 |  | efgt0 |  |-  ( -u y e. RR -> 0 < ( exp ` -u y ) ) | 
						
							| 76 | 72 75 | syl |  |-  ( y e. ( 0 [,) +oo ) -> 0 < ( exp ` -u y ) ) | 
						
							| 77 |  | elico1 |  |-  ( ( 0 e. RR* /\ +oo e. RR* ) -> ( y e. ( 0 [,) +oo ) <-> ( y e. RR* /\ 0 <_ y /\ y < +oo ) ) ) | 
						
							| 78 | 2 3 77 | mp2an |  |-  ( y e. ( 0 [,) +oo ) <-> ( y e. RR* /\ 0 <_ y /\ y < +oo ) ) | 
						
							| 79 | 78 | simp2bi |  |-  ( y e. ( 0 [,) +oo ) -> 0 <_ y ) | 
						
							| 80 | 71 | le0neg2d |  |-  ( y e. ( 0 [,) +oo ) -> ( 0 <_ y <-> -u y <_ 0 ) ) | 
						
							| 81 | 79 80 | mpbid |  |-  ( y e. ( 0 [,) +oo ) -> -u y <_ 0 ) | 
						
							| 82 |  | 0re |  |-  0 e. RR | 
						
							| 83 |  | efle |  |-  ( ( -u y e. RR /\ 0 e. RR ) -> ( -u y <_ 0 <-> ( exp ` -u y ) <_ ( exp ` 0 ) ) ) | 
						
							| 84 | 72 82 83 | sylancl |  |-  ( y e. ( 0 [,) +oo ) -> ( -u y <_ 0 <-> ( exp ` -u y ) <_ ( exp ` 0 ) ) ) | 
						
							| 85 | 81 84 | mpbid |  |-  ( y e. ( 0 [,) +oo ) -> ( exp ` -u y ) <_ ( exp ` 0 ) ) | 
						
							| 86 |  | ef0 |  |-  ( exp ` 0 ) = 1 | 
						
							| 87 | 85 86 | breqtrdi |  |-  ( y e. ( 0 [,) +oo ) -> ( exp ` -u y ) <_ 1 ) | 
						
							| 88 |  | elioc1 |  |-  ( ( 0 e. RR* /\ 1 e. RR* ) -> ( ( exp ` -u y ) e. ( 0 (,] 1 ) <-> ( ( exp ` -u y ) e. RR* /\ 0 < ( exp ` -u y ) /\ ( exp ` -u y ) <_ 1 ) ) ) | 
						
							| 89 | 2 10 88 | mp2an |  |-  ( ( exp ` -u y ) e. ( 0 (,] 1 ) <-> ( ( exp ` -u y ) e. RR* /\ 0 < ( exp ` -u y ) /\ ( exp ` -u y ) <_ 1 ) ) | 
						
							| 90 | 74 76 87 89 | syl3anbrc |  |-  ( y e. ( 0 [,) +oo ) -> ( exp ` -u y ) e. ( 0 (,] 1 ) ) | 
						
							| 91 | 69 90 | syl |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( exp ` -u y ) e. ( 0 (,] 1 ) ) | 
						
							| 92 | 58 91 | sselid |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( exp ` -u y ) e. ( 0 [,] 1 ) ) | 
						
							| 93 | 57 92 | ifclda |  |-  ( y e. ( 0 [,] +oo ) -> if ( y = +oo , 0 , ( exp ` -u y ) ) e. ( 0 [,] 1 ) ) | 
						
							| 94 | 93 | adantl |  |-  ( ( T. /\ y e. ( 0 [,] +oo ) ) -> if ( y = +oo , 0 , ( exp ` -u y ) ) e. ( 0 [,] 1 ) ) | 
						
							| 95 |  | eqeq2 |  |-  ( 0 = if ( y = +oo , 0 , ( exp ` -u y ) ) -> ( x = 0 <-> x = if ( y = +oo , 0 , ( exp ` -u y ) ) ) ) | 
						
							| 96 | 95 | bibi1d |  |-  ( 0 = if ( y = +oo , 0 , ( exp ` -u y ) ) -> ( ( x = 0 <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) <-> ( x = if ( y = +oo , 0 , ( exp ` -u y ) ) <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) ) | 
						
							| 97 |  | eqeq2 |  |-  ( ( exp ` -u y ) = if ( y = +oo , 0 , ( exp ` -u y ) ) -> ( x = ( exp ` -u y ) <-> x = if ( y = +oo , 0 , ( exp ` -u y ) ) ) ) | 
						
							| 98 | 97 | bibi1d |  |-  ( ( exp ` -u y ) = if ( y = +oo , 0 , ( exp ` -u y ) ) -> ( ( x = ( exp ` -u y ) <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) <-> ( x = if ( y = +oo , 0 , ( exp ` -u y ) ) <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) ) | 
						
							| 99 |  | simpr |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> y = +oo ) | 
						
							| 100 |  | iftrue |  |-  ( x = 0 -> if ( x = 0 , +oo , -u ( log ` x ) ) = +oo ) | 
						
							| 101 | 100 | eqeq2d |  |-  ( x = 0 -> ( y = if ( x = 0 , +oo , -u ( log ` x ) ) <-> y = +oo ) ) | 
						
							| 102 | 99 101 | syl5ibrcom |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( x = 0 -> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) | 
						
							| 103 |  | ubico |  |-  ( ( 0 e. RR /\ +oo e. RR* ) -> -. +oo e. ( 0 [,) +oo ) ) | 
						
							| 104 | 82 3 103 | mp2an |  |-  -. +oo e. ( 0 [,) +oo ) | 
						
							| 105 | 104 | nelir |  |-  +oo e/ ( 0 [,) +oo ) | 
						
							| 106 |  | neleq1 |  |-  ( y = +oo -> ( y e/ ( 0 [,) +oo ) <-> +oo e/ ( 0 [,) +oo ) ) ) | 
						
							| 107 | 106 | adantl |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y e/ ( 0 [,) +oo ) <-> +oo e/ ( 0 [,) +oo ) ) ) | 
						
							| 108 | 105 107 | mpbiri |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> y e/ ( 0 [,) +oo ) ) | 
						
							| 109 |  | neleq1 |  |-  ( y = if ( x = 0 , +oo , -u ( log ` x ) ) -> ( y e/ ( 0 [,) +oo ) <-> if ( x = 0 , +oo , -u ( log ` x ) ) e/ ( 0 [,) +oo ) ) ) | 
						
							| 110 | 108 109 | syl5ibcom |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y = if ( x = 0 , +oo , -u ( log ` x ) ) -> if ( x = 0 , +oo , -u ( log ` x ) ) e/ ( 0 [,) +oo ) ) ) | 
						
							| 111 |  | df-nel |  |-  ( if ( x = 0 , +oo , -u ( log ` x ) ) e/ ( 0 [,) +oo ) <-> -. if ( x = 0 , +oo , -u ( log ` x ) ) e. ( 0 [,) +oo ) ) | 
						
							| 112 |  | iffalse |  |-  ( -. x = 0 -> if ( x = 0 , +oo , -u ( log ` x ) ) = -u ( log ` x ) ) | 
						
							| 113 | 112 | adantl |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 0 ) -> if ( x = 0 , +oo , -u ( log ` x ) ) = -u ( log ` x ) ) | 
						
							| 114 | 113 52 | eqeltrd |  |-  ( ( x e. ( 0 [,] 1 ) /\ -. x = 0 ) -> if ( x = 0 , +oo , -u ( log ` x ) ) e. ( 0 [,) +oo ) ) | 
						
							| 115 | 114 | ex |  |-  ( x e. ( 0 [,] 1 ) -> ( -. x = 0 -> if ( x = 0 , +oo , -u ( log ` x ) ) e. ( 0 [,) +oo ) ) ) | 
						
							| 116 | 115 | ad2antrr |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( -. x = 0 -> if ( x = 0 , +oo , -u ( log ` x ) ) e. ( 0 [,) +oo ) ) ) | 
						
							| 117 | 116 | con1d |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( -. if ( x = 0 , +oo , -u ( log ` x ) ) e. ( 0 [,) +oo ) -> x = 0 ) ) | 
						
							| 118 | 111 117 | biimtrid |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( if ( x = 0 , +oo , -u ( log ` x ) ) e/ ( 0 [,) +oo ) -> x = 0 ) ) | 
						
							| 119 | 110 118 | syld |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y = if ( x = 0 , +oo , -u ( log ` x ) ) -> x = 0 ) ) | 
						
							| 120 | 102 119 | impbid |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( x = 0 <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) | 
						
							| 121 |  | eqeq2 |  |-  ( +oo = if ( x = 0 , +oo , -u ( log ` x ) ) -> ( y = +oo <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) | 
						
							| 122 | 121 | bibi2d |  |-  ( +oo = if ( x = 0 , +oo , -u ( log ` x ) ) -> ( ( x = ( exp ` -u y ) <-> y = +oo ) <-> ( x = ( exp ` -u y ) <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) ) | 
						
							| 123 |  | eqeq2 |  |-  ( -u ( log ` x ) = if ( x = 0 , +oo , -u ( log ` x ) ) -> ( y = -u ( log ` x ) <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) | 
						
							| 124 | 123 | bibi2d |  |-  ( -u ( log ` x ) = if ( x = 0 , +oo , -u ( log ` x ) ) -> ( ( x = ( exp ` -u y ) <-> y = -u ( log ` x ) ) <-> ( x = ( exp ` -u y ) <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) ) | 
						
							| 125 | 82 | a1i |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> 0 e. RR ) | 
						
							| 126 | 69 76 | syl |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> 0 < ( exp ` -u y ) ) | 
						
							| 127 | 125 126 | ltned |  |-  ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> 0 =/= ( exp ` -u y ) ) | 
						
							| 128 | 127 | adantll |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> 0 =/= ( exp ` -u y ) ) | 
						
							| 129 | 128 | neneqd |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> -. 0 = ( exp ` -u y ) ) | 
						
							| 130 |  | eqeq1 |  |-  ( x = 0 -> ( x = ( exp ` -u y ) <-> 0 = ( exp ` -u y ) ) ) | 
						
							| 131 | 130 | notbid |  |-  ( x = 0 -> ( -. x = ( exp ` -u y ) <-> -. 0 = ( exp ` -u y ) ) ) | 
						
							| 132 | 129 131 | syl5ibrcom |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> ( x = 0 -> -. x = ( exp ` -u y ) ) ) | 
						
							| 133 | 132 | imp |  |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 0 ) -> -. x = ( exp ` -u y ) ) | 
						
							| 134 |  | simplr |  |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 0 ) -> -. y = +oo ) | 
						
							| 135 | 133 134 | 2falsed |  |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 0 ) -> ( x = ( exp ` -u y ) <-> y = +oo ) ) | 
						
							| 136 |  | eqcom |  |-  ( x = ( exp ` -u y ) <-> ( exp ` -u y ) = x ) | 
						
							| 137 | 136 | a1i |  |-  ( ( x e. ( 0 (,] 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( x = ( exp ` -u y ) <-> ( exp ` -u y ) = x ) ) | 
						
							| 138 |  | relogeftb |  |-  ( ( x e. RR+ /\ -u y e. RR ) -> ( ( log ` x ) = -u y <-> ( exp ` -u y ) = x ) ) | 
						
							| 139 | 32 72 138 | syl2an |  |-  ( ( x e. ( 0 (,] 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( log ` x ) = -u y <-> ( exp ` -u y ) = x ) ) | 
						
							| 140 | 33 | recnd |  |-  ( x e. ( 0 (,] 1 ) -> ( log ` x ) e. CC ) | 
						
							| 141 | 71 | recnd |  |-  ( y e. ( 0 [,) +oo ) -> y e. CC ) | 
						
							| 142 |  | negcon2 |  |-  ( ( ( log ` x ) e. CC /\ y e. CC ) -> ( ( log ` x ) = -u y <-> y = -u ( log ` x ) ) ) | 
						
							| 143 | 140 141 142 | syl2an |  |-  ( ( x e. ( 0 (,] 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( log ` x ) = -u y <-> y = -u ( log ` x ) ) ) | 
						
							| 144 | 137 139 143 | 3bitr2d |  |-  ( ( x e. ( 0 (,] 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( x = ( exp ` -u y ) <-> y = -u ( log ` x ) ) ) | 
						
							| 145 | 23 69 144 | syl2an |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ -. x = 0 ) /\ ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) ) -> ( x = ( exp ` -u y ) <-> y = -u ( log ` x ) ) ) | 
						
							| 146 | 145 | an4s |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ ( -. x = 0 /\ -. y = +oo ) ) -> ( x = ( exp ` -u y ) <-> y = -u ( log ` x ) ) ) | 
						
							| 147 | 146 | anass1rs |  |-  ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ -. x = 0 ) -> ( x = ( exp ` -u y ) <-> y = -u ( log ` x ) ) ) | 
						
							| 148 | 122 124 135 147 | ifbothda |  |-  ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> ( x = ( exp ` -u y ) <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) | 
						
							| 149 | 96 98 120 148 | ifbothda |  |-  ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) -> ( x = if ( y = +oo , 0 , ( exp ` -u y ) ) <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) | 
						
							| 150 | 149 | adantl |  |-  ( ( T. /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) ) -> ( x = if ( y = +oo , 0 , ( exp ` -u y ) ) <-> y = if ( x = 0 , +oo , -u ( log ` x ) ) ) ) | 
						
							| 151 | 1 55 94 150 | f1ocnv2d |  |-  ( T. -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 0 , ( exp ` -u y ) ) ) ) ) | 
						
							| 152 | 151 | mptru |  |-  ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 0 , ( exp ` -u y ) ) ) ) |