| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) |
| 2 |
|
iocssicc |
|- ( 0 (,] 1 ) C_ ( 0 [,] 1 ) |
| 3 |
2
|
sseli |
|- ( X e. ( 0 (,] 1 ) -> X e. ( 0 [,] 1 ) ) |
| 4 |
|
eqeq1 |
|- ( x = X -> ( x = 0 <-> X = 0 ) ) |
| 5 |
|
fveq2 |
|- ( x = X -> ( log ` x ) = ( log ` X ) ) |
| 6 |
5
|
negeqd |
|- ( x = X -> -u ( log ` x ) = -u ( log ` X ) ) |
| 7 |
4 6
|
ifbieq2d |
|- ( x = X -> if ( x = 0 , +oo , -u ( log ` x ) ) = if ( X = 0 , +oo , -u ( log ` X ) ) ) |
| 8 |
|
pnfex |
|- +oo e. _V |
| 9 |
|
negex |
|- -u ( log ` X ) e. _V |
| 10 |
8 9
|
ifex |
|- if ( X = 0 , +oo , -u ( log ` X ) ) e. _V |
| 11 |
7 1 10
|
fvmpt |
|- ( X e. ( 0 [,] 1 ) -> ( F ` X ) = if ( X = 0 , +oo , -u ( log ` X ) ) ) |
| 12 |
3 11
|
syl |
|- ( X e. ( 0 (,] 1 ) -> ( F ` X ) = if ( X = 0 , +oo , -u ( log ` X ) ) ) |
| 13 |
|
0xr |
|- 0 e. RR* |
| 14 |
|
1re |
|- 1 e. RR |
| 15 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( X e. ( 0 (,] 1 ) <-> ( X e. RR /\ 0 < X /\ X <_ 1 ) ) ) |
| 16 |
13 14 15
|
mp2an |
|- ( X e. ( 0 (,] 1 ) <-> ( X e. RR /\ 0 < X /\ X <_ 1 ) ) |
| 17 |
16
|
simp2bi |
|- ( X e. ( 0 (,] 1 ) -> 0 < X ) |
| 18 |
17
|
gt0ne0d |
|- ( X e. ( 0 (,] 1 ) -> X =/= 0 ) |
| 19 |
18
|
neneqd |
|- ( X e. ( 0 (,] 1 ) -> -. X = 0 ) |
| 20 |
19
|
iffalsed |
|- ( X e. ( 0 (,] 1 ) -> if ( X = 0 , +oo , -u ( log ` X ) ) = -u ( log ` X ) ) |
| 21 |
12 20
|
eqtrd |
|- ( X e. ( 0 (,] 1 ) -> ( F ` X ) = -u ( log ` X ) ) |