Metamath Proof Explorer


Theorem xrge0iifcv

Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017)

Ref Expression
Hypothesis xrge0iifhmeo.1 F=x01ifx=0+∞logx
Assertion xrge0iifcv X01FX=logX

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F=x01ifx=0+∞logx
2 iocssicc 0101
3 2 sseli X01X01
4 eqeq1 x=Xx=0X=0
5 fveq2 x=Xlogx=logX
6 5 negeqd x=Xlogx=logX
7 4 6 ifbieq2d x=Xifx=0+∞logx=ifX=0+∞logX
8 pnfex +∞V
9 negex logXV
10 8 9 ifex ifX=0+∞logXV
11 7 1 10 fvmpt X01FX=ifX=0+∞logX
12 3 11 syl X01FX=ifX=0+∞logX
13 0xr 0*
14 1re 1
15 elioc2 0*1X01X0<XX1
16 13 14 15 mp2an X01X0<XX1
17 16 simp2bi X010<X
18 17 gt0ne0d X01X0
19 18 neneqd X01¬X=0
20 19 iffalsed X01ifX=0+∞logX=logX
21 12 20 eqtrd X01FX=logX