Metamath Proof Explorer


Theorem xrge0iifiso

Description: The defined bijection from the closed unit interval onto the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017)

Ref Expression
Hypothesis xrge0iifhmeo.1 F=x01ifx=0+∞logx
Assertion xrge0iifiso FIsom<,<-1010+∞

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F=x01ifx=0+∞logx
2 iccssxr 01*
3 xrltso <Or*
4 soss 01*<Or*<Or01
5 2 3 4 mp2 <Or01
6 iccssxr 0+∞*
7 cnvso <Or*<-1Or*
8 3 7 mpbi <-1Or*
9 sopo <-1Or*<-1Po*
10 8 9 ax-mp <-1Po*
11 poss 0+∞*<-1Po*<-1Po0+∞
12 6 10 11 mp2 <-1Po0+∞
13 1 xrge0iifcnv F:011-1 onto0+∞F-1=z0+∞ifz=+∞0ez
14 13 simpli F:011-1 onto0+∞
15 f1ofo F:011-1 onto0+∞F:01onto0+∞
16 14 15 ax-mp F:01onto0+∞
17 0xr 0*
18 1xr 1*
19 0le1 01
20 snunioc 0*1*01001=01
21 17 18 19 20 mp3an 001=01
22 21 eleq2i w001w01
23 elun w001w0w01
24 22 23 bitr3i w01w0w01
25 velsn w0w=0
26 elunitrn z01z
27 26 adantr z010<zz
28 simpr z010<z0<z
29 elicc01 z01z0zz1
30 29 simp3bi z01z1
31 30 adantr z010<zz1
32 1re 1
33 elioc2 0*1z01z0<zz1
34 17 32 33 mp2an z01z0<zz1
35 27 28 31 34 syl3anbrc z010<zz01
36 pnfxr +∞*
37 0le0 00
38 ltpnf 11<+∞
39 32 38 ax-mp 1<+∞
40 iocssioo 0*+∞*001<+∞010+∞
41 17 36 37 39 40 mp4an 010+∞
42 ioorp 0+∞=+
43 41 42 sseqtri 01+
44 43 sseli z01z+
45 relogcl z+logz
46 45 renegcld z+logz
47 ltpnf logzlogz<+∞
48 46 47 syl z+logz<+∞
49 brcnvg +∞*logz+∞<-1logzlogz<+∞
50 36 46 49 sylancr z++∞<-1logzlogz<+∞
51 48 50 mpbird z++∞<-1logz
52 44 51 syl z01+∞<-1logz
53 1 xrge0iifcv z01Fz=logz
54 52 53 breqtrrd z01+∞<-1Fz
55 35 54 syl z010<z+∞<-1Fz
56 55 ex z010<z+∞<-1Fz
57 breq1 w=0w<z0<z
58 fveq2 w=0Fw=F0
59 0elunit 001
60 iftrue x=0ifx=0+∞logx=+∞
61 pnfex +∞V
62 60 1 61 fvmpt 001F0=+∞
63 59 62 ax-mp F0=+∞
64 58 63 eqtrdi w=0Fw=+∞
65 64 breq1d w=0Fw<-1Fz+∞<-1Fz
66 57 65 imbi12d w=0w<zFw<-1Fz0<z+∞<-1Fz
67 56 66 imbitrrid w=0z01w<zFw<-1Fz
68 25 67 sylbi w0z01w<zFw<-1Fz
69 simpll w01z01w<zw01
70 26 ad2antlr w01z01w<zz
71 0re 0
72 71 a1i w01z01w<z0
73 43 sseli w01w+
74 73 rpred w01w
75 74 ad2antrr w01z01w<zw
76 elioc2 0*1w01w0<ww1
77 17 32 76 mp2an w01w0<ww1
78 77 simp2bi w010<w
79 78 ad2antrr w01z01w<z0<w
80 simpr w01z01w<zw<z
81 72 75 70 79 80 lttrd w01z01w<z0<z
82 30 ad2antlr w01z01w<zz1
83 70 81 82 34 syl3anbrc w01z01w<zz01
84 69 83 jca w01z01w<zw01z01
85 73 adantr w01z01w+
86 85 relogcld w01z01logw
87 44 adantl w01z01z+
88 87 relogcld w01z01logz
89 86 88 ltnegd w01z01logw<logzlogz<logw
90 logltb w+z+w<zlogw<logz
91 73 44 90 syl2an w01z01w<zlogw<logz
92 negex logwV
93 negex logzV
94 92 93 brcnv logw<-1logzlogz<logw
95 94 a1i w01z01logw<-1logzlogz<logw
96 89 91 95 3bitr4d w01z01w<zlogw<-1logz
97 96 biimpd w01z01w<zlogw<-1logz
98 1 xrge0iifcv w01Fw=logw
99 98 53 breqan12d w01z01Fw<-1Fzlogw<-1logz
100 97 99 sylibrd w01z01w<zFw<-1Fz
101 84 80 100 sylc w01z01w<zFw<-1Fz
102 101 exp31 w01z01w<zFw<-1Fz
103 68 102 jaoi w0w01z01w<zFw<-1Fz
104 24 103 sylbi w01z01w<zFw<-1Fz
105 104 imp w01z01w<zFw<-1Fz
106 105 rgen2 w01z01w<zFw<-1Fz
107 soisoi <Or01<-1Po0+∞F:01onto0+∞w01z01w<zFw<-1FzFIsom<,<-1010+∞
108 5 12 16 106 107 mp4an FIsom<,<-1010+∞