| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) |
| 2 |
|
iccssxr |
⊢ ( 0 [,] 1 ) ⊆ ℝ* |
| 3 |
|
xrltso |
⊢ < Or ℝ* |
| 4 |
|
soss |
⊢ ( ( 0 [,] 1 ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] 1 ) ) ) |
| 5 |
2 3 4
|
mp2 |
⊢ < Or ( 0 [,] 1 ) |
| 6 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 7 |
|
cnvso |
⊢ ( < Or ℝ* ↔ ◡ < Or ℝ* ) |
| 8 |
3 7
|
mpbi |
⊢ ◡ < Or ℝ* |
| 9 |
|
sopo |
⊢ ( ◡ < Or ℝ* → ◡ < Po ℝ* ) |
| 10 |
8 9
|
ax-mp |
⊢ ◡ < Po ℝ* |
| 11 |
|
poss |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( ◡ < Po ℝ* → ◡ < Po ( 0 [,] +∞ ) ) ) |
| 12 |
6 10 11
|
mp2 |
⊢ ◡ < Po ( 0 [,] +∞ ) |
| 13 |
1
|
xrge0iifcnv |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑧 = +∞ , 0 , ( exp ‘ - 𝑧 ) ) ) ) |
| 14 |
13
|
simpli |
⊢ 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) |
| 15 |
|
f1ofo |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) ) |
| 16 |
14 15
|
ax-mp |
⊢ 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) |
| 17 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 18 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 19 |
|
0le1 |
⊢ 0 ≤ 1 |
| 20 |
|
snunioc |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1 ) → ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) ) |
| 21 |
17 18 19 20
|
mp3an |
⊢ ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) |
| 22 |
21
|
eleq2i |
⊢ ( 𝑤 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ 𝑤 ∈ ( 0 [,] 1 ) ) |
| 23 |
|
elun |
⊢ ( 𝑤 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ ( 𝑤 ∈ { 0 } ∨ 𝑤 ∈ ( 0 (,] 1 ) ) ) |
| 24 |
22 23
|
bitr3i |
⊢ ( 𝑤 ∈ ( 0 [,] 1 ) ↔ ( 𝑤 ∈ { 0 } ∨ 𝑤 ∈ ( 0 (,] 1 ) ) ) |
| 25 |
|
velsn |
⊢ ( 𝑤 ∈ { 0 } ↔ 𝑤 = 0 ) |
| 26 |
|
elunitrn |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) → 𝑧 ∈ ℝ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → 𝑧 ∈ ℝ ) |
| 28 |
|
simpr |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → 0 < 𝑧 ) |
| 29 |
|
elicc01 |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 ≤ 1 ) ) |
| 30 |
29
|
simp3bi |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) → 𝑧 ≤ 1 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → 𝑧 ≤ 1 ) |
| 32 |
|
1re |
⊢ 1 ∈ ℝ |
| 33 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑧 ∈ ( 0 (,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ 1 ) ) ) |
| 34 |
17 32 33
|
mp2an |
⊢ ( 𝑧 ∈ ( 0 (,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ∧ 𝑧 ≤ 1 ) ) |
| 35 |
27 28 31 34
|
syl3anbrc |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → 𝑧 ∈ ( 0 (,] 1 ) ) |
| 36 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 37 |
|
0le0 |
⊢ 0 ≤ 0 |
| 38 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
| 39 |
32 38
|
ax-mp |
⊢ 1 < +∞ |
| 40 |
|
iocssioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 1 < +∞ ) ) → ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ ) ) |
| 41 |
17 36 37 39 40
|
mp4an |
⊢ ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ ) |
| 42 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 43 |
41 42
|
sseqtri |
⊢ ( 0 (,] 1 ) ⊆ ℝ+ |
| 44 |
43
|
sseli |
⊢ ( 𝑧 ∈ ( 0 (,] 1 ) → 𝑧 ∈ ℝ+ ) |
| 45 |
|
relogcl |
⊢ ( 𝑧 ∈ ℝ+ → ( log ‘ 𝑧 ) ∈ ℝ ) |
| 46 |
45
|
renegcld |
⊢ ( 𝑧 ∈ ℝ+ → - ( log ‘ 𝑧 ) ∈ ℝ ) |
| 47 |
|
ltpnf |
⊢ ( - ( log ‘ 𝑧 ) ∈ ℝ → - ( log ‘ 𝑧 ) < +∞ ) |
| 48 |
46 47
|
syl |
⊢ ( 𝑧 ∈ ℝ+ → - ( log ‘ 𝑧 ) < +∞ ) |
| 49 |
|
brcnvg |
⊢ ( ( +∞ ∈ ℝ* ∧ - ( log ‘ 𝑧 ) ∈ ℝ ) → ( +∞ ◡ < - ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < +∞ ) ) |
| 50 |
36 46 49
|
sylancr |
⊢ ( 𝑧 ∈ ℝ+ → ( +∞ ◡ < - ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < +∞ ) ) |
| 51 |
48 50
|
mpbird |
⊢ ( 𝑧 ∈ ℝ+ → +∞ ◡ < - ( log ‘ 𝑧 ) ) |
| 52 |
44 51
|
syl |
⊢ ( 𝑧 ∈ ( 0 (,] 1 ) → +∞ ◡ < - ( log ‘ 𝑧 ) ) |
| 53 |
1
|
xrge0iifcv |
⊢ ( 𝑧 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑧 ) = - ( log ‘ 𝑧 ) ) |
| 54 |
52 53
|
breqtrrd |
⊢ ( 𝑧 ∈ ( 0 (,] 1 ) → +∞ ◡ < ( 𝐹 ‘ 𝑧 ) ) |
| 55 |
35 54
|
syl |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → +∞ ◡ < ( 𝐹 ‘ 𝑧 ) ) |
| 56 |
55
|
ex |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) → ( 0 < 𝑧 → +∞ ◡ < ( 𝐹 ‘ 𝑧 ) ) ) |
| 57 |
|
breq1 |
⊢ ( 𝑤 = 0 → ( 𝑤 < 𝑧 ↔ 0 < 𝑧 ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑤 = 0 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 0 ) ) |
| 59 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 60 |
|
iftrue |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = +∞ ) |
| 61 |
|
pnfex |
⊢ +∞ ∈ V |
| 62 |
60 1 61
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 0 ) = +∞ ) |
| 63 |
59 62
|
ax-mp |
⊢ ( 𝐹 ‘ 0 ) = +∞ |
| 64 |
58 63
|
eqtrdi |
⊢ ( 𝑤 = 0 → ( 𝐹 ‘ 𝑤 ) = +∞ ) |
| 65 |
64
|
breq1d |
⊢ ( 𝑤 = 0 → ( ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ↔ +∞ ◡ < ( 𝐹 ‘ 𝑧 ) ) ) |
| 66 |
57 65
|
imbi12d |
⊢ ( 𝑤 = 0 → ( ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) ↔ ( 0 < 𝑧 → +∞ ◡ < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 67 |
56 66
|
imbitrrid |
⊢ ( 𝑤 = 0 → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 68 |
25 67
|
sylbi |
⊢ ( 𝑤 ∈ { 0 } → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 69 |
|
simpll |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑤 ∈ ( 0 (,] 1 ) ) |
| 70 |
26
|
ad2antlr |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑧 ∈ ℝ ) |
| 71 |
|
0re |
⊢ 0 ∈ ℝ |
| 72 |
71
|
a1i |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 0 ∈ ℝ ) |
| 73 |
43
|
sseli |
⊢ ( 𝑤 ∈ ( 0 (,] 1 ) → 𝑤 ∈ ℝ+ ) |
| 74 |
73
|
rpred |
⊢ ( 𝑤 ∈ ( 0 (,] 1 ) → 𝑤 ∈ ℝ ) |
| 75 |
74
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑤 ∈ ℝ ) |
| 76 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑤 ∈ ( 0 (,] 1 ) ↔ ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ∧ 𝑤 ≤ 1 ) ) ) |
| 77 |
17 32 76
|
mp2an |
⊢ ( 𝑤 ∈ ( 0 (,] 1 ) ↔ ( 𝑤 ∈ ℝ ∧ 0 < 𝑤 ∧ 𝑤 ≤ 1 ) ) |
| 78 |
77
|
simp2bi |
⊢ ( 𝑤 ∈ ( 0 (,] 1 ) → 0 < 𝑤 ) |
| 79 |
78
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 0 < 𝑤 ) |
| 80 |
|
simpr |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑤 < 𝑧 ) |
| 81 |
72 75 70 79 80
|
lttrd |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 0 < 𝑧 ) |
| 82 |
30
|
ad2antlr |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑧 ≤ 1 ) |
| 83 |
70 81 82 34
|
syl3anbrc |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑧 ∈ ( 0 (,] 1 ) ) |
| 84 |
69 83
|
jca |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) ) |
| 85 |
73
|
adantr |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → 𝑤 ∈ ℝ+ ) |
| 86 |
85
|
relogcld |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑤 ) ∈ ℝ ) |
| 87 |
44
|
adantl |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → 𝑧 ∈ ℝ+ ) |
| 88 |
87
|
relogcld |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑧 ) ∈ ℝ ) |
| 89 |
86 88
|
ltnegd |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( ( log ‘ 𝑤 ) < ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < - ( log ‘ 𝑤 ) ) ) |
| 90 |
|
logltb |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → ( 𝑤 < 𝑧 ↔ ( log ‘ 𝑤 ) < ( log ‘ 𝑧 ) ) ) |
| 91 |
73 44 90
|
syl2an |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( 𝑤 < 𝑧 ↔ ( log ‘ 𝑤 ) < ( log ‘ 𝑧 ) ) ) |
| 92 |
|
negex |
⊢ - ( log ‘ 𝑤 ) ∈ V |
| 93 |
|
negex |
⊢ - ( log ‘ 𝑧 ) ∈ V |
| 94 |
92 93
|
brcnv |
⊢ ( - ( log ‘ 𝑤 ) ◡ < - ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < - ( log ‘ 𝑤 ) ) |
| 95 |
94
|
a1i |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( - ( log ‘ 𝑤 ) ◡ < - ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < - ( log ‘ 𝑤 ) ) ) |
| 96 |
89 91 95
|
3bitr4d |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( 𝑤 < 𝑧 ↔ - ( log ‘ 𝑤 ) ◡ < - ( log ‘ 𝑧 ) ) ) |
| 97 |
96
|
biimpd |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( 𝑤 < 𝑧 → - ( log ‘ 𝑤 ) ◡ < - ( log ‘ 𝑧 ) ) ) |
| 98 |
1
|
xrge0iifcv |
⊢ ( 𝑤 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑤 ) = - ( log ‘ 𝑤 ) ) |
| 99 |
98 53
|
breqan12d |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ↔ - ( log ‘ 𝑤 ) ◡ < - ( log ‘ 𝑧 ) ) ) |
| 100 |
97 99
|
sylibrd |
⊢ ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) ) |
| 101 |
84 80 100
|
sylc |
⊢ ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) |
| 102 |
101
|
exp31 |
⊢ ( 𝑤 ∈ ( 0 (,] 1 ) → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 103 |
68 102
|
jaoi |
⊢ ( ( 𝑤 ∈ { 0 } ∨ 𝑤 ∈ ( 0 (,] 1 ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 104 |
24 103
|
sylbi |
⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 105 |
104
|
imp |
⊢ ( ( 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) ) |
| 106 |
105
|
rgen2 |
⊢ ∀ 𝑤 ∈ ( 0 [,] 1 ) ∀ 𝑧 ∈ ( 0 [,] 1 ) ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) |
| 107 |
|
soisoi |
⊢ ( ( ( < Or ( 0 [,] 1 ) ∧ ◡ < Po ( 0 [,] +∞ ) ) ∧ ( 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) ∧ ∀ 𝑤 ∈ ( 0 [,] 1 ) ∀ 𝑧 ∈ ( 0 [,] 1 ) ( 𝑤 < 𝑧 → ( 𝐹 ‘ 𝑤 ) ◡ < ( 𝐹 ‘ 𝑧 ) ) ) ) → 𝐹 Isom < , ◡ < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) ) |
| 108 |
5 12 16 106 107
|
mp4an |
⊢ 𝐹 Isom < , ◡ < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) |