Metamath Proof Explorer


Theorem xrge0iifiso

Description: The defined bijection from the closed unit interval onto the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017)

Ref Expression
Hypothesis xrge0iifhmeo.1 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) )
Assertion xrge0iifiso 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) )
2 iccssxr ( 0 [,] 1 ) ⊆ ℝ*
3 xrltso < Or ℝ*
4 soss ( ( 0 [,] 1 ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] 1 ) ) )
5 2 3 4 mp2 < Or ( 0 [,] 1 )
6 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
7 cnvso ( < Or ℝ* < Or ℝ* )
8 3 7 mpbi < Or ℝ*
9 sopo ( < Or ℝ* < Po ℝ* )
10 8 9 ax-mp < Po ℝ*
11 poss ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Po ℝ* < Po ( 0 [,] +∞ ) ) )
12 6 10 11 mp2 < Po ( 0 [,] +∞ )
13 1 xrge0iifcnv ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ 𝐹 = ( 𝑧 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑧 = +∞ , 0 , ( exp ‘ - 𝑧 ) ) ) )
14 13 simpli 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ )
15 f1ofo ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) )
16 14 15 ax-mp 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ )
17 0xr 0 ∈ ℝ*
18 1xr 1 ∈ ℝ*
19 0le1 0 ≤ 1
20 snunioc ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1 ) → ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) )
21 17 18 19 20 mp3an ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 )
22 21 eleq2i ( 𝑤 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ 𝑤 ∈ ( 0 [,] 1 ) )
23 elun ( 𝑤 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ ( 𝑤 ∈ { 0 } ∨ 𝑤 ∈ ( 0 (,] 1 ) ) )
24 22 23 bitr3i ( 𝑤 ∈ ( 0 [,] 1 ) ↔ ( 𝑤 ∈ { 0 } ∨ 𝑤 ∈ ( 0 (,] 1 ) ) )
25 velsn ( 𝑤 ∈ { 0 } ↔ 𝑤 = 0 )
26 elunitrn ( 𝑧 ∈ ( 0 [,] 1 ) → 𝑧 ∈ ℝ )
27 26 adantr ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → 𝑧 ∈ ℝ )
28 simpr ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → 0 < 𝑧 )
29 elicc01 ( 𝑧 ∈ ( 0 [,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1 ) )
30 29 simp3bi ( 𝑧 ∈ ( 0 [,] 1 ) → 𝑧 ≤ 1 )
31 30 adantr ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → 𝑧 ≤ 1 )
32 1re 1 ∈ ℝ
33 elioc2 ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑧 ∈ ( 0 (,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1 ) ) )
34 17 32 33 mp2an ( 𝑧 ∈ ( 0 (,] 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1 ) )
35 27 28 31 34 syl3anbrc ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → 𝑧 ∈ ( 0 (,] 1 ) )
36 pnfxr +∞ ∈ ℝ*
37 0le0 0 ≤ 0
38 ltpnf ( 1 ∈ ℝ → 1 < +∞ )
39 32 38 ax-mp 1 < +∞
40 iocssioo ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 1 < +∞ ) ) → ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ ) )
41 17 36 37 39 40 mp4an ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ )
42 ioorp ( 0 (,) +∞ ) = ℝ+
43 41 42 sseqtri ( 0 (,] 1 ) ⊆ ℝ+
44 43 sseli ( 𝑧 ∈ ( 0 (,] 1 ) → 𝑧 ∈ ℝ+ )
45 relogcl ( 𝑧 ∈ ℝ+ → ( log ‘ 𝑧 ) ∈ ℝ )
46 45 renegcld ( 𝑧 ∈ ℝ+ → - ( log ‘ 𝑧 ) ∈ ℝ )
47 ltpnf ( - ( log ‘ 𝑧 ) ∈ ℝ → - ( log ‘ 𝑧 ) < +∞ )
48 46 47 syl ( 𝑧 ∈ ℝ+ → - ( log ‘ 𝑧 ) < +∞ )
49 brcnvg ( ( +∞ ∈ ℝ* ∧ - ( log ‘ 𝑧 ) ∈ ℝ ) → ( +∞ < - ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < +∞ ) )
50 36 46 49 sylancr ( 𝑧 ∈ ℝ+ → ( +∞ < - ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < +∞ ) )
51 48 50 mpbird ( 𝑧 ∈ ℝ+ → +∞ < - ( log ‘ 𝑧 ) )
52 44 51 syl ( 𝑧 ∈ ( 0 (,] 1 ) → +∞ < - ( log ‘ 𝑧 ) )
53 1 xrge0iifcv ( 𝑧 ∈ ( 0 (,] 1 ) → ( 𝐹𝑧 ) = - ( log ‘ 𝑧 ) )
54 52 53 breqtrrd ( 𝑧 ∈ ( 0 (,] 1 ) → +∞ < ( 𝐹𝑧 ) )
55 35 54 syl ( ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 0 < 𝑧 ) → +∞ < ( 𝐹𝑧 ) )
56 55 ex ( 𝑧 ∈ ( 0 [,] 1 ) → ( 0 < 𝑧 → +∞ < ( 𝐹𝑧 ) ) )
57 breq1 ( 𝑤 = 0 → ( 𝑤 < 𝑧 ↔ 0 < 𝑧 ) )
58 fveq2 ( 𝑤 = 0 → ( 𝐹𝑤 ) = ( 𝐹 ‘ 0 ) )
59 0elunit 0 ∈ ( 0 [,] 1 )
60 iftrue ( 𝑥 = 0 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = +∞ )
61 pnfex +∞ ∈ V
62 60 1 61 fvmpt ( 0 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 0 ) = +∞ )
63 59 62 ax-mp ( 𝐹 ‘ 0 ) = +∞
64 58 63 eqtrdi ( 𝑤 = 0 → ( 𝐹𝑤 ) = +∞ )
65 64 breq1d ( 𝑤 = 0 → ( ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ↔ +∞ < ( 𝐹𝑧 ) ) )
66 57 65 imbi12d ( 𝑤 = 0 → ( ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ↔ ( 0 < 𝑧 → +∞ < ( 𝐹𝑧 ) ) ) )
67 56 66 syl5ibr ( 𝑤 = 0 → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ) )
68 25 67 sylbi ( 𝑤 ∈ { 0 } → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ) )
69 simpll ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑤 ∈ ( 0 (,] 1 ) )
70 26 ad2antlr ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑧 ∈ ℝ )
71 0re 0 ∈ ℝ
72 71 a1i ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 0 ∈ ℝ )
73 43 sseli ( 𝑤 ∈ ( 0 (,] 1 ) → 𝑤 ∈ ℝ+ )
74 73 rpred ( 𝑤 ∈ ( 0 (,] 1 ) → 𝑤 ∈ ℝ )
75 74 ad2antrr ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑤 ∈ ℝ )
76 elioc2 ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝑤 ∈ ( 0 (,] 1 ) ↔ ( 𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1 ) ) )
77 17 32 76 mp2an ( 𝑤 ∈ ( 0 (,] 1 ) ↔ ( 𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1 ) )
78 77 simp2bi ( 𝑤 ∈ ( 0 (,] 1 ) → 0 < 𝑤 )
79 78 ad2antrr ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 0 < 𝑤 )
80 simpr ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑤 < 𝑧 )
81 72 75 70 79 80 lttrd ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 0 < 𝑧 )
82 30 ad2antlr ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑧 ≤ 1 )
83 70 81 82 34 syl3anbrc ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → 𝑧 ∈ ( 0 (,] 1 ) )
84 69 83 jca ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) )
85 73 adantr ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → 𝑤 ∈ ℝ+ )
86 85 relogcld ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑤 ) ∈ ℝ )
87 44 adantl ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → 𝑧 ∈ ℝ+ )
88 87 relogcld ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑧 ) ∈ ℝ )
89 86 88 ltnegd ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( ( log ‘ 𝑤 ) < ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < - ( log ‘ 𝑤 ) ) )
90 logltb ( ( 𝑤 ∈ ℝ+𝑧 ∈ ℝ+ ) → ( 𝑤 < 𝑧 ↔ ( log ‘ 𝑤 ) < ( log ‘ 𝑧 ) ) )
91 73 44 90 syl2an ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( 𝑤 < 𝑧 ↔ ( log ‘ 𝑤 ) < ( log ‘ 𝑧 ) ) )
92 negex - ( log ‘ 𝑤 ) ∈ V
93 negex - ( log ‘ 𝑧 ) ∈ V
94 92 93 brcnv ( - ( log ‘ 𝑤 ) < - ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < - ( log ‘ 𝑤 ) )
95 94 a1i ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( - ( log ‘ 𝑤 ) < - ( log ‘ 𝑧 ) ↔ - ( log ‘ 𝑧 ) < - ( log ‘ 𝑤 ) ) )
96 89 91 95 3bitr4d ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( 𝑤 < 𝑧 ↔ - ( log ‘ 𝑤 ) < - ( log ‘ 𝑧 ) ) )
97 96 biimpd ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( 𝑤 < 𝑧 → - ( log ‘ 𝑤 ) < - ( log ‘ 𝑧 ) ) )
98 1 xrge0iifcv ( 𝑤 ∈ ( 0 (,] 1 ) → ( 𝐹𝑤 ) = - ( log ‘ 𝑤 ) )
99 98 53 breqan12d ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ↔ - ( log ‘ 𝑤 ) < - ( log ‘ 𝑧 ) ) )
100 97 99 sylibrd ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 (,] 1 ) ) → ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) )
101 84 80 100 sylc ( ( ( 𝑤 ∈ ( 0 (,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) ∧ 𝑤 < 𝑧 ) → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) )
102 101 exp31 ( 𝑤 ∈ ( 0 (,] 1 ) → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ) )
103 68 102 jaoi ( ( 𝑤 ∈ { 0 } ∨ 𝑤 ∈ ( 0 (,] 1 ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ) )
104 24 103 sylbi ( 𝑤 ∈ ( 0 [,] 1 ) → ( 𝑧 ∈ ( 0 [,] 1 ) → ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ) )
105 104 imp ( ( 𝑤 ∈ ( 0 [,] 1 ) ∧ 𝑧 ∈ ( 0 [,] 1 ) ) → ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) )
106 105 rgen2 𝑤 ∈ ( 0 [,] 1 ) ∀ 𝑧 ∈ ( 0 [,] 1 ) ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) )
107 soisoi ( ( ( < Or ( 0 [,] 1 ) ∧ < Po ( 0 [,] +∞ ) ) ∧ ( 𝐹 : ( 0 [,] 1 ) –onto→ ( 0 [,] +∞ ) ∧ ∀ 𝑤 ∈ ( 0 [,] 1 ) ∀ 𝑧 ∈ ( 0 [,] 1 ) ( 𝑤 < 𝑧 → ( 𝐹𝑤 ) < ( 𝐹𝑧 ) ) ) ) → 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) ) )
108 5 12 16 106 107 mp4an 𝐹 Isom < , < ( ( 0 [,] 1 ) , ( 0 [,] +∞ ) )