Metamath Proof Explorer


Theorem xrge0iifhmeo

Description: Expose a homeomorphism from the closed unit interval to the extended nonnegative reals. (Contributed by Thierry Arnoux, 1-Apr-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1 F=x01ifx=0+∞logx
xrge0iifhmeo.k J=ordTop𝑡0+∞
Assertion xrge0iifhmeo FIIHomeoJ

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F=x01ifx=0+∞logx
2 xrge0iifhmeo.k J=ordTop𝑡0+∞
3 letsr TosetRel
4 tsrps TosetRelPosetRel
5 3 4 ax-mp PosetRel
6 5 elexi V
7 6 inex1 01×01V
8 cnvps PosetRel-1PosetRel
9 5 8 ax-mp -1PosetRel
10 9 elexi -1V
11 10 inex1 -10+∞×0+∞V
12 1 xrge0iifiso FIsom<,<-1010+∞
13 iccssxr 01*
14 iccssxr 0+∞*
15 gtiso 01*0+∞*FIsom<,<-1010+∞FIsom,-1010+∞
16 13 14 15 mp2an FIsom<,<-1010+∞FIsom,-1010+∞
17 12 16 mpbi FIsom,-1010+∞
18 isores1 FIsom,-1010+∞FIsom01×01,-1010+∞
19 17 18 mpbi FIsom01×01,-1010+∞
20 isores2 FIsom01×01,-1010+∞FIsom01×01,-10+∞×0+∞010+∞
21 19 20 mpbi FIsom01×01,-10+∞×0+∞010+∞
22 ledm *=dom
23 22 psssdm PosetRel01*dom01×01=01
24 5 13 23 mp2an dom01×01=01
25 24 eqcomi 01=dom01×01
26 lern *=ran
27 df-rn ran=dom-1
28 26 27 eqtri *=dom-1
29 28 psssdm -1PosetRel0+∞*dom-10+∞×0+∞=0+∞
30 9 14 29 mp2an dom-10+∞×0+∞=0+∞
31 30 eqcomi 0+∞=dom-10+∞×0+∞
32 25 31 ordthmeo 01×01V-10+∞×0+∞VFIsom01×01,-10+∞×0+∞010+∞FordTop01×01HomeoordTop-10+∞×0+∞
33 7 11 21 32 mp3an FordTop01×01HomeoordTop-10+∞×0+∞
34 dfii5 II=ordTop01×01
35 iccss2 x0+∞y0+∞xy0+∞
36 14 35 cnvordtrestixx ordTop𝑡0+∞=ordTop-10+∞×0+∞
37 2 36 eqtri J=ordTop-10+∞×0+∞
38 34 37 oveq12i IIHomeoJ=ordTop01×01HomeoordTop-10+∞×0+∞
39 33 38 eleqtrri FIIHomeoJ