Metamath Proof Explorer


Theorem xrge0iifhmeo

Description: Expose a homeomorphism from the closed unit interval to the extended nonnegative reals. (Contributed by Thierry Arnoux, 1-Apr-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
xrge0iifhmeo.k J = ordTop 𝑡 0 +∞
Assertion xrge0iifhmeo F II Homeo J

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
2 xrge0iifhmeo.k J = ordTop 𝑡 0 +∞
3 letsr TosetRel
4 tsrps TosetRel PosetRel
5 3 4 ax-mp PosetRel
6 5 elexi V
7 6 inex1 0 1 × 0 1 V
8 cnvps PosetRel -1 PosetRel
9 5 8 ax-mp -1 PosetRel
10 9 elexi -1 V
11 10 inex1 -1 0 +∞ × 0 +∞ V
12 1 xrge0iifiso F Isom < , < -1 0 1 0 +∞
13 iccssxr 0 1 *
14 iccssxr 0 +∞ *
15 gtiso 0 1 * 0 +∞ * F Isom < , < -1 0 1 0 +∞ F Isom , -1 0 1 0 +∞
16 13 14 15 mp2an F Isom < , < -1 0 1 0 +∞ F Isom , -1 0 1 0 +∞
17 12 16 mpbi F Isom , -1 0 1 0 +∞
18 isores1 F Isom , -1 0 1 0 +∞ F Isom 0 1 × 0 1 , -1 0 1 0 +∞
19 17 18 mpbi F Isom 0 1 × 0 1 , -1 0 1 0 +∞
20 isores2 F Isom 0 1 × 0 1 , -1 0 1 0 +∞ F Isom 0 1 × 0 1 , -1 0 +∞ × 0 +∞ 0 1 0 +∞
21 19 20 mpbi F Isom 0 1 × 0 1 , -1 0 +∞ × 0 +∞ 0 1 0 +∞
22 ledm * = dom
23 22 psssdm PosetRel 0 1 * dom 0 1 × 0 1 = 0 1
24 5 13 23 mp2an dom 0 1 × 0 1 = 0 1
25 24 eqcomi 0 1 = dom 0 1 × 0 1
26 lern * = ran
27 df-rn ran = dom -1
28 26 27 eqtri * = dom -1
29 28 psssdm -1 PosetRel 0 +∞ * dom -1 0 +∞ × 0 +∞ = 0 +∞
30 9 14 29 mp2an dom -1 0 +∞ × 0 +∞ = 0 +∞
31 30 eqcomi 0 +∞ = dom -1 0 +∞ × 0 +∞
32 25 31 ordthmeo 0 1 × 0 1 V -1 0 +∞ × 0 +∞ V F Isom 0 1 × 0 1 , -1 0 +∞ × 0 +∞ 0 1 0 +∞ F ordTop 0 1 × 0 1 Homeo ordTop -1 0 +∞ × 0 +∞
33 7 11 21 32 mp3an F ordTop 0 1 × 0 1 Homeo ordTop -1 0 +∞ × 0 +∞
34 dfii5 II = ordTop 0 1 × 0 1
35 iccss2 x 0 +∞ y 0 +∞ x y 0 +∞
36 14 35 cnvordtrestixx ordTop 𝑡 0 +∞ = ordTop -1 0 +∞ × 0 +∞
37 2 36 eqtri J = ordTop -1 0 +∞ × 0 +∞
38 34 37 oveq12i II Homeo J = ordTop 0 1 × 0 1 Homeo ordTop -1 0 +∞ × 0 +∞
39 33 38 eleqtrri F II Homeo J