Description: Expose a homeomorphism from the closed unit interval to the extended nonnegative reals. (Contributed by Thierry Arnoux, 1-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrge0iifhmeo.1 | |
|
xrge0iifhmeo.k | |
||
Assertion | xrge0iifhmeo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0iifhmeo.1 | |
|
2 | xrge0iifhmeo.k | |
|
3 | letsr | |
|
4 | tsrps | |
|
5 | 3 4 | ax-mp | |
6 | 5 | elexi | |
7 | 6 | inex1 | |
8 | cnvps | |
|
9 | 5 8 | ax-mp | |
10 | 9 | elexi | |
11 | 10 | inex1 | |
12 | 1 | xrge0iifiso | |
13 | iccssxr | |
|
14 | iccssxr | |
|
15 | gtiso | |
|
16 | 13 14 15 | mp2an | |
17 | 12 16 | mpbi | |
18 | isores1 | |
|
19 | 17 18 | mpbi | |
20 | isores2 | |
|
21 | 19 20 | mpbi | |
22 | ledm | |
|
23 | 22 | psssdm | |
24 | 5 13 23 | mp2an | |
25 | 24 | eqcomi | |
26 | lern | |
|
27 | df-rn | |
|
28 | 26 27 | eqtri | |
29 | 28 | psssdm | |
30 | 9 14 29 | mp2an | |
31 | 30 | eqcomi | |
32 | 25 31 | ordthmeo | |
33 | 7 11 21 32 | mp3an | |
34 | dfii5 | |
|
35 | iccss2 | |
|
36 | 14 35 | cnvordtrestixx | |
37 | 2 36 | eqtri | |
38 | 34 37 | oveq12i | |
39 | 33 38 | eleqtrri | |