Metamath Proof Explorer


Theorem isores2

Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013)

Ref Expression
Assertion isores2 HIsomR,SABHIsomR,SB×BAB

Proof

Step Hyp Ref Expression
1 f1of H:A1-1 ontoBH:AB
2 ffvelcdm H:ABxAHxB
3 2 adantrr H:ABxAyAHxB
4 ffvelcdm H:AByAHyB
5 4 adantrl H:ABxAyAHyB
6 brinxp HxBHyBHxSHyHxSB×BHy
7 3 5 6 syl2anc H:ABxAyAHxSHyHxSB×BHy
8 1 7 sylan H:A1-1 ontoBxAyAHxSHyHxSB×BHy
9 8 anassrs H:A1-1 ontoBxAyAHxSHyHxSB×BHy
10 9 bibi2d H:A1-1 ontoBxAyAxRyHxSHyxRyHxSB×BHy
11 10 ralbidva H:A1-1 ontoBxAyAxRyHxSHyyAxRyHxSB×BHy
12 11 ralbidva H:A1-1 ontoBxAyAxRyHxSHyxAyAxRyHxSB×BHy
13 12 pm5.32i H:A1-1 ontoBxAyAxRyHxSHyH:A1-1 ontoBxAyAxRyHxSB×BHy
14 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
15 df-isom HIsomR,SB×BABH:A1-1 ontoBxAyAxRyHxSB×BHy
16 13 14 15 3bitr4i HIsomR,SABHIsomR,SB×BAB