| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) |
| 2 |
|
xrge0iifhmeo.k |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 3 |
|
letsr |
|- <_ e. TosetRel |
| 4 |
|
tsrps |
|- ( <_ e. TosetRel -> <_ e. PosetRel ) |
| 5 |
3 4
|
ax-mp |
|- <_ e. PosetRel |
| 6 |
5
|
elexi |
|- <_ e. _V |
| 7 |
6
|
inex1 |
|- ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V |
| 8 |
|
cnvps |
|- ( <_ e. PosetRel -> `' <_ e. PosetRel ) |
| 9 |
5 8
|
ax-mp |
|- `' <_ e. PosetRel |
| 10 |
9
|
elexi |
|- `' <_ e. _V |
| 11 |
10
|
inex1 |
|- ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V |
| 12 |
1
|
xrge0iifiso |
|- F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 13 |
|
iccssxr |
|- ( 0 [,] 1 ) C_ RR* |
| 14 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 15 |
|
gtiso |
|- ( ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) -> ( F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) ) |
| 16 |
13 14 15
|
mp2an |
|- ( F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
| 17 |
12 16
|
mpbi |
|- F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 18 |
|
isores1 |
|- ( F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
| 19 |
17 18
|
mpbi |
|- F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 20 |
|
isores2 |
|- ( F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
| 21 |
19 20
|
mpbi |
|- F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
| 22 |
|
ledm |
|- RR* = dom <_ |
| 23 |
22
|
psssdm |
|- ( ( <_ e. PosetRel /\ ( 0 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) ) |
| 24 |
5 13 23
|
mp2an |
|- dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) |
| 25 |
24
|
eqcomi |
|- ( 0 [,] 1 ) = dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 26 |
|
lern |
|- RR* = ran <_ |
| 27 |
|
df-rn |
|- ran <_ = dom `' <_ |
| 28 |
26 27
|
eqtri |
|- RR* = dom `' <_ |
| 29 |
28
|
psssdm |
|- ( ( `' <_ e. PosetRel /\ ( 0 [,] +oo ) C_ RR* ) -> dom ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) ) |
| 30 |
9 14 29
|
mp2an |
|- dom ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) |
| 31 |
30
|
eqcomi |
|- ( 0 [,] +oo ) = dom ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) |
| 32 |
25 31
|
ordthmeo |
|- ( ( ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V /\ ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) ) |
| 33 |
7 11 21 32
|
mp3an |
|- F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) |
| 34 |
|
dfii5 |
|- II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
| 35 |
|
iccss2 |
|- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x [,] y ) C_ ( 0 [,] +oo ) ) |
| 36 |
14 35
|
cnvordtrestixx |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) |
| 37 |
2 36
|
eqtri |
|- J = ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) |
| 38 |
34 37
|
oveq12i |
|- ( II Homeo J ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) |
| 39 |
33 38
|
eleqtrri |
|- F e. ( II Homeo J ) |