Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0iifhmeo.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) |
2 |
|
xrge0iifhmeo.k |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
3 |
|
letsr |
|- <_ e. TosetRel |
4 |
|
tsrps |
|- ( <_ e. TosetRel -> <_ e. PosetRel ) |
5 |
3 4
|
ax-mp |
|- <_ e. PosetRel |
6 |
5
|
elexi |
|- <_ e. _V |
7 |
6
|
inex1 |
|- ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V |
8 |
|
cnvps |
|- ( <_ e. PosetRel -> `' <_ e. PosetRel ) |
9 |
5 8
|
ax-mp |
|- `' <_ e. PosetRel |
10 |
9
|
elexi |
|- `' <_ e. _V |
11 |
10
|
inex1 |
|- ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V |
12 |
1
|
xrge0iifiso |
|- F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
13 |
|
iccssxr |
|- ( 0 [,] 1 ) C_ RR* |
14 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
15 |
|
gtiso |
|- ( ( ( 0 [,] 1 ) C_ RR* /\ ( 0 [,] +oo ) C_ RR* ) -> ( F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) ) |
16 |
13 14 15
|
mp2an |
|- ( F Isom < , `' < ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
17 |
12 16
|
mpbi |
|- F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
18 |
|
isores1 |
|- ( F Isom <_ , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
19 |
17 18
|
mpbi |
|- F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
20 |
|
isores2 |
|- ( F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , `' <_ ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) <-> F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) |
21 |
19 20
|
mpbi |
|- F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) |
22 |
|
ledm |
|- RR* = dom <_ |
23 |
22
|
psssdm |
|- ( ( <_ e. PosetRel /\ ( 0 [,] 1 ) C_ RR* ) -> dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) ) |
24 |
5 13 23
|
mp2an |
|- dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( 0 [,] 1 ) |
25 |
24
|
eqcomi |
|- ( 0 [,] 1 ) = dom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
26 |
|
lern |
|- RR* = ran <_ |
27 |
|
df-rn |
|- ran <_ = dom `' <_ |
28 |
26 27
|
eqtri |
|- RR* = dom `' <_ |
29 |
28
|
psssdm |
|- ( ( `' <_ e. PosetRel /\ ( 0 [,] +oo ) C_ RR* ) -> dom ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) ) |
30 |
9 14 29
|
mp2an |
|- dom ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) = ( 0 [,] +oo ) |
31 |
30
|
eqcomi |
|- ( 0 [,] +oo ) = dom ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) |
32 |
25 31
|
ordthmeo |
|- ( ( ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. _V /\ ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) e. _V /\ F Isom ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) , ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ( ( 0 [,] 1 ) , ( 0 [,] +oo ) ) ) -> F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) ) |
33 |
7 11 21 32
|
mp3an |
|- F e. ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) |
34 |
|
dfii5 |
|- II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
35 |
|
iccss2 |
|- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x [,] y ) C_ ( 0 [,] +oo ) ) |
36 |
14 35
|
cnvordtrestixx |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) |
37 |
2 36
|
eqtri |
|- J = ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) |
38 |
34 37
|
oveq12i |
|- ( II Homeo J ) = ( ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) Homeo ( ordTop ` ( `' <_ i^i ( ( 0 [,] +oo ) X. ( 0 [,] +oo ) ) ) ) ) |
39 |
33 38
|
eleqtrri |
|- F e. ( II Homeo J ) |