| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) |
| 2 |
|
xrge0iifhmeo.k |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 3 |
|
0xr |
|- 0 e. RR* |
| 4 |
|
1xr |
|- 1 e. RR* |
| 5 |
|
0le1 |
|- 0 <_ 1 |
| 6 |
|
snunioc |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) ) |
| 7 |
3 4 5 6
|
mp3an |
|- ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) |
| 8 |
7
|
eleq2i |
|- ( Y e. ( { 0 } u. ( 0 (,] 1 ) ) <-> Y e. ( 0 [,] 1 ) ) |
| 9 |
|
elun |
|- ( Y e. ( { 0 } u. ( 0 (,] 1 ) ) <-> ( Y e. { 0 } \/ Y e. ( 0 (,] 1 ) ) ) |
| 10 |
8 9
|
bitr3i |
|- ( Y e. ( 0 [,] 1 ) <-> ( Y e. { 0 } \/ Y e. ( 0 (,] 1 ) ) ) |
| 11 |
|
elsni |
|- ( Y e. { 0 } -> Y = 0 ) |
| 12 |
11
|
orim1i |
|- ( ( Y e. { 0 } \/ Y e. ( 0 (,] 1 ) ) -> ( Y = 0 \/ Y e. ( 0 (,] 1 ) ) ) |
| 13 |
10 12
|
sylbi |
|- ( Y e. ( 0 [,] 1 ) -> ( Y = 0 \/ Y e. ( 0 (,] 1 ) ) ) |
| 14 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 15 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , +oo , -u ( log ` x ) ) = +oo ) |
| 16 |
|
pnfex |
|- +oo e. _V |
| 17 |
15 1 16
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( F ` 0 ) = +oo ) |
| 18 |
14 17
|
ax-mp |
|- ( F ` 0 ) = +oo |
| 19 |
18
|
oveq2i |
|- ( ( F ` X ) +e ( F ` 0 ) ) = ( ( F ` X ) +e +oo ) |
| 20 |
|
eqeq1 |
|- ( x = X -> ( x = 0 <-> X = 0 ) ) |
| 21 |
|
fveq2 |
|- ( x = X -> ( log ` x ) = ( log ` X ) ) |
| 22 |
21
|
negeqd |
|- ( x = X -> -u ( log ` x ) = -u ( log ` X ) ) |
| 23 |
20 22
|
ifbieq2d |
|- ( x = X -> if ( x = 0 , +oo , -u ( log ` x ) ) = if ( X = 0 , +oo , -u ( log ` X ) ) ) |
| 24 |
|
negex |
|- -u ( log ` X ) e. _V |
| 25 |
16 24
|
ifex |
|- if ( X = 0 , +oo , -u ( log ` X ) ) e. _V |
| 26 |
23 1 25
|
fvmpt |
|- ( X e. ( 0 [,] 1 ) -> ( F ` X ) = if ( X = 0 , +oo , -u ( log ` X ) ) ) |
| 27 |
|
pnfxr |
|- +oo e. RR* |
| 28 |
27
|
a1i |
|- ( ( X e. ( 0 [,] 1 ) /\ X = 0 ) -> +oo e. RR* ) |
| 29 |
|
elunitrn |
|- ( X e. ( 0 [,] 1 ) -> X e. RR ) |
| 30 |
29
|
adantr |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> X e. RR ) |
| 31 |
|
elunitge0 |
|- ( X e. ( 0 [,] 1 ) -> 0 <_ X ) |
| 32 |
31
|
adantr |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> 0 <_ X ) |
| 33 |
|
simpr |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -. X = 0 ) |
| 34 |
33
|
neqned |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> X =/= 0 ) |
| 35 |
30 32 34
|
ne0gt0d |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> 0 < X ) |
| 36 |
30 35
|
elrpd |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> X e. RR+ ) |
| 37 |
36
|
relogcld |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> ( log ` X ) e. RR ) |
| 38 |
37
|
renegcld |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -u ( log ` X ) e. RR ) |
| 39 |
38
|
rexrd |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -u ( log ` X ) e. RR* ) |
| 40 |
28 39
|
ifclda |
|- ( X e. ( 0 [,] 1 ) -> if ( X = 0 , +oo , -u ( log ` X ) ) e. RR* ) |
| 41 |
26 40
|
eqeltrd |
|- ( X e. ( 0 [,] 1 ) -> ( F ` X ) e. RR* ) |
| 42 |
41
|
adantr |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` X ) e. RR* ) |
| 43 |
|
neeq1 |
|- ( +oo = if ( X = 0 , +oo , -u ( log ` X ) ) -> ( +oo =/= -oo <-> if ( X = 0 , +oo , -u ( log ` X ) ) =/= -oo ) ) |
| 44 |
|
neeq1 |
|- ( -u ( log ` X ) = if ( X = 0 , +oo , -u ( log ` X ) ) -> ( -u ( log ` X ) =/= -oo <-> if ( X = 0 , +oo , -u ( log ` X ) ) =/= -oo ) ) |
| 45 |
|
pnfnemnf |
|- +oo =/= -oo |
| 46 |
45
|
a1i |
|- ( ( X e. ( 0 [,] 1 ) /\ X = 0 ) -> +oo =/= -oo ) |
| 47 |
38
|
renemnfd |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -u ( log ` X ) =/= -oo ) |
| 48 |
43 44 46 47
|
ifbothda |
|- ( X e. ( 0 [,] 1 ) -> if ( X = 0 , +oo , -u ( log ` X ) ) =/= -oo ) |
| 49 |
26 48
|
eqnetrd |
|- ( X e. ( 0 [,] 1 ) -> ( F ` X ) =/= -oo ) |
| 50 |
49
|
adantr |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` X ) =/= -oo ) |
| 51 |
|
xaddpnf1 |
|- ( ( ( F ` X ) e. RR* /\ ( F ` X ) =/= -oo ) -> ( ( F ` X ) +e +oo ) = +oo ) |
| 52 |
42 50 51
|
syl2anc |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e +oo ) = +oo ) |
| 53 |
19 52
|
eqtrid |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e ( F ` 0 ) ) = +oo ) |
| 54 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
| 55 |
|
simpl |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> X e. ( 0 [,] 1 ) ) |
| 56 |
54 55
|
sselid |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> X e. CC ) |
| 57 |
56
|
mul01d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( X x. 0 ) = 0 ) |
| 58 |
57
|
fveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. 0 ) ) = ( F ` 0 ) ) |
| 59 |
58 18
|
eqtrdi |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. 0 ) ) = +oo ) |
| 60 |
53 59
|
eqtr4d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e ( F ` 0 ) ) = ( F ` ( X x. 0 ) ) ) |
| 61 |
|
simpr |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> Y = 0 ) |
| 62 |
61
|
fveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` Y ) = ( F ` 0 ) ) |
| 63 |
62
|
oveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e ( F ` Y ) ) = ( ( F ` X ) +e ( F ` 0 ) ) ) |
| 64 |
61
|
oveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( X x. Y ) = ( X x. 0 ) ) |
| 65 |
64
|
fveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. Y ) ) = ( F ` ( X x. 0 ) ) ) |
| 66 |
60 63 65
|
3eqtr4rd |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
| 67 |
7
|
eleq2i |
|- ( X e. ( { 0 } u. ( 0 (,] 1 ) ) <-> X e. ( 0 [,] 1 ) ) |
| 68 |
|
elun |
|- ( X e. ( { 0 } u. ( 0 (,] 1 ) ) <-> ( X e. { 0 } \/ X e. ( 0 (,] 1 ) ) ) |
| 69 |
67 68
|
bitr3i |
|- ( X e. ( 0 [,] 1 ) <-> ( X e. { 0 } \/ X e. ( 0 (,] 1 ) ) ) |
| 70 |
|
elsni |
|- ( X e. { 0 } -> X = 0 ) |
| 71 |
70
|
orim1i |
|- ( ( X e. { 0 } \/ X e. ( 0 (,] 1 ) ) -> ( X = 0 \/ X e. ( 0 (,] 1 ) ) ) |
| 72 |
69 71
|
sylbi |
|- ( X e. ( 0 [,] 1 ) -> ( X = 0 \/ X e. ( 0 (,] 1 ) ) ) |
| 73 |
18
|
oveq1i |
|- ( ( F ` 0 ) +e ( F ` Y ) ) = ( +oo +e ( F ` Y ) ) |
| 74 |
|
simpr |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> Y e. ( 0 (,] 1 ) ) |
| 75 |
1
|
xrge0iifcv |
|- ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) = -u ( log ` Y ) ) |
| 76 |
|
0le0 |
|- 0 <_ 0 |
| 77 |
|
1re |
|- 1 e. RR |
| 78 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
| 79 |
77 78
|
ax-mp |
|- 1 < +oo |
| 80 |
|
iocssioo |
|- ( ( ( 0 e. RR* /\ +oo e. RR* ) /\ ( 0 <_ 0 /\ 1 < +oo ) ) -> ( 0 (,] 1 ) C_ ( 0 (,) +oo ) ) |
| 81 |
3 27 76 79 80
|
mp4an |
|- ( 0 (,] 1 ) C_ ( 0 (,) +oo ) |
| 82 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
| 83 |
81 82
|
sseqtri |
|- ( 0 (,] 1 ) C_ RR+ |
| 84 |
83
|
sseli |
|- ( Y e. ( 0 (,] 1 ) -> Y e. RR+ ) |
| 85 |
84
|
relogcld |
|- ( Y e. ( 0 (,] 1 ) -> ( log ` Y ) e. RR ) |
| 86 |
85
|
renegcld |
|- ( Y e. ( 0 (,] 1 ) -> -u ( log ` Y ) e. RR ) |
| 87 |
75 86
|
eqeltrd |
|- ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) e. RR ) |
| 88 |
87
|
rexrd |
|- ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) e. RR* ) |
| 89 |
74 88
|
syl |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` Y ) e. RR* ) |
| 90 |
87
|
renemnfd |
|- ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) =/= -oo ) |
| 91 |
74 90
|
syl |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` Y ) =/= -oo ) |
| 92 |
|
xaddpnf2 |
|- ( ( ( F ` Y ) e. RR* /\ ( F ` Y ) =/= -oo ) -> ( +oo +e ( F ` Y ) ) = +oo ) |
| 93 |
89 91 92
|
syl2anc |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( +oo +e ( F ` Y ) ) = +oo ) |
| 94 |
73 93
|
eqtrid |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` 0 ) +e ( F ` Y ) ) = +oo ) |
| 95 |
|
rpssre |
|- RR+ C_ RR |
| 96 |
83 95
|
sstri |
|- ( 0 (,] 1 ) C_ RR |
| 97 |
|
ax-resscn |
|- RR C_ CC |
| 98 |
96 97
|
sstri |
|- ( 0 (,] 1 ) C_ CC |
| 99 |
98 74
|
sselid |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> Y e. CC ) |
| 100 |
99
|
mul02d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( 0 x. Y ) = 0 ) |
| 101 |
100
|
fveq2d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( 0 x. Y ) ) = ( F ` 0 ) ) |
| 102 |
101 18
|
eqtrdi |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( 0 x. Y ) ) = +oo ) |
| 103 |
94 102
|
eqtr4d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` 0 ) +e ( F ` Y ) ) = ( F ` ( 0 x. Y ) ) ) |
| 104 |
|
simpl |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> X = 0 ) |
| 105 |
104
|
fveq2d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` X ) = ( F ` 0 ) ) |
| 106 |
105
|
oveq1d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` X ) +e ( F ` Y ) ) = ( ( F ` 0 ) +e ( F ` Y ) ) ) |
| 107 |
104
|
fvoveq1d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( F ` ( 0 x. Y ) ) ) |
| 108 |
103 106 107
|
3eqtr4rd |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
| 109 |
|
simpl |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. ( 0 (,] 1 ) ) |
| 110 |
83 109
|
sselid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. RR+ ) |
| 111 |
110
|
relogcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` X ) e. RR ) |
| 112 |
111
|
renegcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( log ` X ) e. RR ) |
| 113 |
|
simpr |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. ( 0 (,] 1 ) ) |
| 114 |
83 113
|
sselid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. RR+ ) |
| 115 |
114
|
relogcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` Y ) e. RR ) |
| 116 |
115
|
renegcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( log ` Y ) e. RR ) |
| 117 |
|
rexadd |
|- ( ( -u ( log ` X ) e. RR /\ -u ( log ` Y ) e. RR ) -> ( -u ( log ` X ) +e -u ( log ` Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) |
| 118 |
112 116 117
|
syl2anc |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( -u ( log ` X ) +e -u ( log ` Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) |
| 119 |
1
|
xrge0iifcv |
|- ( X e. ( 0 (,] 1 ) -> ( F ` X ) = -u ( log ` X ) ) |
| 120 |
119 75
|
oveqan12d |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` X ) +e ( F ` Y ) ) = ( -u ( log ` X ) +e -u ( log ` Y ) ) ) |
| 121 |
110
|
rpred |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. RR ) |
| 122 |
114
|
rpred |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. RR ) |
| 123 |
121 122
|
remulcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) e. RR ) |
| 124 |
110
|
rpgt0d |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> 0 < X ) |
| 125 |
114
|
rpgt0d |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> 0 < Y ) |
| 126 |
121 122 124 125
|
mulgt0d |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> 0 < ( X x. Y ) ) |
| 127 |
|
iocssicc |
|- ( 0 (,] 1 ) C_ ( 0 [,] 1 ) |
| 128 |
127 109
|
sselid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. ( 0 [,] 1 ) ) |
| 129 |
127 113
|
sselid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. ( 0 [,] 1 ) ) |
| 130 |
|
iimulcl |
|- ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 [,] 1 ) ) -> ( X x. Y ) e. ( 0 [,] 1 ) ) |
| 131 |
128 129 130
|
syl2anc |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) e. ( 0 [,] 1 ) ) |
| 132 |
|
elicc01 |
|- ( ( X x. Y ) e. ( 0 [,] 1 ) <-> ( ( X x. Y ) e. RR /\ 0 <_ ( X x. Y ) /\ ( X x. Y ) <_ 1 ) ) |
| 133 |
132
|
simp3bi |
|- ( ( X x. Y ) e. ( 0 [,] 1 ) -> ( X x. Y ) <_ 1 ) |
| 134 |
131 133
|
syl |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) <_ 1 ) |
| 135 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( ( X x. Y ) e. ( 0 (,] 1 ) <-> ( ( X x. Y ) e. RR /\ 0 < ( X x. Y ) /\ ( X x. Y ) <_ 1 ) ) ) |
| 136 |
3 77 135
|
mp2an |
|- ( ( X x. Y ) e. ( 0 (,] 1 ) <-> ( ( X x. Y ) e. RR /\ 0 < ( X x. Y ) /\ ( X x. Y ) <_ 1 ) ) |
| 137 |
123 126 134 136
|
syl3anbrc |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) e. ( 0 (,] 1 ) ) |
| 138 |
1
|
xrge0iifcv |
|- ( ( X x. Y ) e. ( 0 (,] 1 ) -> ( F ` ( X x. Y ) ) = -u ( log ` ( X x. Y ) ) ) |
| 139 |
137 138
|
syl |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = -u ( log ` ( X x. Y ) ) ) |
| 140 |
110 114
|
relogmuld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` ( X x. Y ) ) = ( ( log ` X ) + ( log ` Y ) ) ) |
| 141 |
140
|
negeqd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( log ` ( X x. Y ) ) = -u ( ( log ` X ) + ( log ` Y ) ) ) |
| 142 |
111
|
recnd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` X ) e. CC ) |
| 143 |
115
|
recnd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` Y ) e. CC ) |
| 144 |
142 143
|
negdid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( ( log ` X ) + ( log ` Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) |
| 145 |
139 141 144
|
3eqtrd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) |
| 146 |
118 120 145
|
3eqtr4rd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
| 147 |
108 146
|
jaoian |
|- ( ( ( X = 0 \/ X e. ( 0 (,] 1 ) ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
| 148 |
72 147
|
sylan |
|- ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
| 149 |
66 148
|
jaodan |
|- ( ( X e. ( 0 [,] 1 ) /\ ( Y = 0 \/ Y e. ( 0 (,] 1 ) ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
| 150 |
13 149
|
sylan2 |
|- ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 [,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |