Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0iifhmeo.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) |
2 |
|
xrge0iifhmeo.k |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
3 |
|
0xr |
|- 0 e. RR* |
4 |
|
1xr |
|- 1 e. RR* |
5 |
|
0le1 |
|- 0 <_ 1 |
6 |
|
snunioc |
|- ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) ) |
7 |
3 4 5 6
|
mp3an |
|- ( { 0 } u. ( 0 (,] 1 ) ) = ( 0 [,] 1 ) |
8 |
7
|
eleq2i |
|- ( Y e. ( { 0 } u. ( 0 (,] 1 ) ) <-> Y e. ( 0 [,] 1 ) ) |
9 |
|
elun |
|- ( Y e. ( { 0 } u. ( 0 (,] 1 ) ) <-> ( Y e. { 0 } \/ Y e. ( 0 (,] 1 ) ) ) |
10 |
8 9
|
bitr3i |
|- ( Y e. ( 0 [,] 1 ) <-> ( Y e. { 0 } \/ Y e. ( 0 (,] 1 ) ) ) |
11 |
|
elsni |
|- ( Y e. { 0 } -> Y = 0 ) |
12 |
11
|
orim1i |
|- ( ( Y e. { 0 } \/ Y e. ( 0 (,] 1 ) ) -> ( Y = 0 \/ Y e. ( 0 (,] 1 ) ) ) |
13 |
10 12
|
sylbi |
|- ( Y e. ( 0 [,] 1 ) -> ( Y = 0 \/ Y e. ( 0 (,] 1 ) ) ) |
14 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
15 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , +oo , -u ( log ` x ) ) = +oo ) |
16 |
|
pnfex |
|- +oo e. _V |
17 |
15 1 16
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( F ` 0 ) = +oo ) |
18 |
14 17
|
ax-mp |
|- ( F ` 0 ) = +oo |
19 |
18
|
oveq2i |
|- ( ( F ` X ) +e ( F ` 0 ) ) = ( ( F ` X ) +e +oo ) |
20 |
|
eqeq1 |
|- ( x = X -> ( x = 0 <-> X = 0 ) ) |
21 |
|
fveq2 |
|- ( x = X -> ( log ` x ) = ( log ` X ) ) |
22 |
21
|
negeqd |
|- ( x = X -> -u ( log ` x ) = -u ( log ` X ) ) |
23 |
20 22
|
ifbieq2d |
|- ( x = X -> if ( x = 0 , +oo , -u ( log ` x ) ) = if ( X = 0 , +oo , -u ( log ` X ) ) ) |
24 |
|
negex |
|- -u ( log ` X ) e. _V |
25 |
16 24
|
ifex |
|- if ( X = 0 , +oo , -u ( log ` X ) ) e. _V |
26 |
23 1 25
|
fvmpt |
|- ( X e. ( 0 [,] 1 ) -> ( F ` X ) = if ( X = 0 , +oo , -u ( log ` X ) ) ) |
27 |
|
pnfxr |
|- +oo e. RR* |
28 |
27
|
a1i |
|- ( ( X e. ( 0 [,] 1 ) /\ X = 0 ) -> +oo e. RR* ) |
29 |
|
elunitrn |
|- ( X e. ( 0 [,] 1 ) -> X e. RR ) |
30 |
29
|
adantr |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> X e. RR ) |
31 |
|
elunitge0 |
|- ( X e. ( 0 [,] 1 ) -> 0 <_ X ) |
32 |
31
|
adantr |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> 0 <_ X ) |
33 |
|
simpr |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -. X = 0 ) |
34 |
33
|
neqned |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> X =/= 0 ) |
35 |
30 32 34
|
ne0gt0d |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> 0 < X ) |
36 |
30 35
|
elrpd |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> X e. RR+ ) |
37 |
36
|
relogcld |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> ( log ` X ) e. RR ) |
38 |
37
|
renegcld |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -u ( log ` X ) e. RR ) |
39 |
38
|
rexrd |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -u ( log ` X ) e. RR* ) |
40 |
28 39
|
ifclda |
|- ( X e. ( 0 [,] 1 ) -> if ( X = 0 , +oo , -u ( log ` X ) ) e. RR* ) |
41 |
26 40
|
eqeltrd |
|- ( X e. ( 0 [,] 1 ) -> ( F ` X ) e. RR* ) |
42 |
41
|
adantr |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` X ) e. RR* ) |
43 |
|
neeq1 |
|- ( +oo = if ( X = 0 , +oo , -u ( log ` X ) ) -> ( +oo =/= -oo <-> if ( X = 0 , +oo , -u ( log ` X ) ) =/= -oo ) ) |
44 |
|
neeq1 |
|- ( -u ( log ` X ) = if ( X = 0 , +oo , -u ( log ` X ) ) -> ( -u ( log ` X ) =/= -oo <-> if ( X = 0 , +oo , -u ( log ` X ) ) =/= -oo ) ) |
45 |
|
pnfnemnf |
|- +oo =/= -oo |
46 |
45
|
a1i |
|- ( ( X e. ( 0 [,] 1 ) /\ X = 0 ) -> +oo =/= -oo ) |
47 |
38
|
renemnfd |
|- ( ( X e. ( 0 [,] 1 ) /\ -. X = 0 ) -> -u ( log ` X ) =/= -oo ) |
48 |
43 44 46 47
|
ifbothda |
|- ( X e. ( 0 [,] 1 ) -> if ( X = 0 , +oo , -u ( log ` X ) ) =/= -oo ) |
49 |
26 48
|
eqnetrd |
|- ( X e. ( 0 [,] 1 ) -> ( F ` X ) =/= -oo ) |
50 |
49
|
adantr |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` X ) =/= -oo ) |
51 |
|
xaddpnf1 |
|- ( ( ( F ` X ) e. RR* /\ ( F ` X ) =/= -oo ) -> ( ( F ` X ) +e +oo ) = +oo ) |
52 |
42 50 51
|
syl2anc |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e +oo ) = +oo ) |
53 |
19 52
|
eqtrid |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e ( F ` 0 ) ) = +oo ) |
54 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
55 |
|
simpl |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> X e. ( 0 [,] 1 ) ) |
56 |
54 55
|
sselid |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> X e. CC ) |
57 |
56
|
mul01d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( X x. 0 ) = 0 ) |
58 |
57
|
fveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. 0 ) ) = ( F ` 0 ) ) |
59 |
58 18
|
eqtrdi |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. 0 ) ) = +oo ) |
60 |
53 59
|
eqtr4d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e ( F ` 0 ) ) = ( F ` ( X x. 0 ) ) ) |
61 |
|
simpr |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> Y = 0 ) |
62 |
61
|
fveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` Y ) = ( F ` 0 ) ) |
63 |
62
|
oveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( ( F ` X ) +e ( F ` Y ) ) = ( ( F ` X ) +e ( F ` 0 ) ) ) |
64 |
61
|
oveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( X x. Y ) = ( X x. 0 ) ) |
65 |
64
|
fveq2d |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. Y ) ) = ( F ` ( X x. 0 ) ) ) |
66 |
60 63 65
|
3eqtr4rd |
|- ( ( X e. ( 0 [,] 1 ) /\ Y = 0 ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
67 |
7
|
eleq2i |
|- ( X e. ( { 0 } u. ( 0 (,] 1 ) ) <-> X e. ( 0 [,] 1 ) ) |
68 |
|
elun |
|- ( X e. ( { 0 } u. ( 0 (,] 1 ) ) <-> ( X e. { 0 } \/ X e. ( 0 (,] 1 ) ) ) |
69 |
67 68
|
bitr3i |
|- ( X e. ( 0 [,] 1 ) <-> ( X e. { 0 } \/ X e. ( 0 (,] 1 ) ) ) |
70 |
|
elsni |
|- ( X e. { 0 } -> X = 0 ) |
71 |
70
|
orim1i |
|- ( ( X e. { 0 } \/ X e. ( 0 (,] 1 ) ) -> ( X = 0 \/ X e. ( 0 (,] 1 ) ) ) |
72 |
69 71
|
sylbi |
|- ( X e. ( 0 [,] 1 ) -> ( X = 0 \/ X e. ( 0 (,] 1 ) ) ) |
73 |
18
|
oveq1i |
|- ( ( F ` 0 ) +e ( F ` Y ) ) = ( +oo +e ( F ` Y ) ) |
74 |
|
simpr |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> Y e. ( 0 (,] 1 ) ) |
75 |
1
|
xrge0iifcv |
|- ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) = -u ( log ` Y ) ) |
76 |
|
0le0 |
|- 0 <_ 0 |
77 |
|
1re |
|- 1 e. RR |
78 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
79 |
77 78
|
ax-mp |
|- 1 < +oo |
80 |
|
iocssioo |
|- ( ( ( 0 e. RR* /\ +oo e. RR* ) /\ ( 0 <_ 0 /\ 1 < +oo ) ) -> ( 0 (,] 1 ) C_ ( 0 (,) +oo ) ) |
81 |
3 27 76 79 80
|
mp4an |
|- ( 0 (,] 1 ) C_ ( 0 (,) +oo ) |
82 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
83 |
81 82
|
sseqtri |
|- ( 0 (,] 1 ) C_ RR+ |
84 |
83
|
sseli |
|- ( Y e. ( 0 (,] 1 ) -> Y e. RR+ ) |
85 |
84
|
relogcld |
|- ( Y e. ( 0 (,] 1 ) -> ( log ` Y ) e. RR ) |
86 |
85
|
renegcld |
|- ( Y e. ( 0 (,] 1 ) -> -u ( log ` Y ) e. RR ) |
87 |
75 86
|
eqeltrd |
|- ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) e. RR ) |
88 |
87
|
rexrd |
|- ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) e. RR* ) |
89 |
74 88
|
syl |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` Y ) e. RR* ) |
90 |
87
|
renemnfd |
|- ( Y e. ( 0 (,] 1 ) -> ( F ` Y ) =/= -oo ) |
91 |
74 90
|
syl |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` Y ) =/= -oo ) |
92 |
|
xaddpnf2 |
|- ( ( ( F ` Y ) e. RR* /\ ( F ` Y ) =/= -oo ) -> ( +oo +e ( F ` Y ) ) = +oo ) |
93 |
89 91 92
|
syl2anc |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( +oo +e ( F ` Y ) ) = +oo ) |
94 |
73 93
|
eqtrid |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` 0 ) +e ( F ` Y ) ) = +oo ) |
95 |
|
rpssre |
|- RR+ C_ RR |
96 |
83 95
|
sstri |
|- ( 0 (,] 1 ) C_ RR |
97 |
|
ax-resscn |
|- RR C_ CC |
98 |
96 97
|
sstri |
|- ( 0 (,] 1 ) C_ CC |
99 |
98 74
|
sselid |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> Y e. CC ) |
100 |
99
|
mul02d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( 0 x. Y ) = 0 ) |
101 |
100
|
fveq2d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( 0 x. Y ) ) = ( F ` 0 ) ) |
102 |
101 18
|
eqtrdi |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( 0 x. Y ) ) = +oo ) |
103 |
94 102
|
eqtr4d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` 0 ) +e ( F ` Y ) ) = ( F ` ( 0 x. Y ) ) ) |
104 |
|
simpl |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> X = 0 ) |
105 |
104
|
fveq2d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` X ) = ( F ` 0 ) ) |
106 |
105
|
oveq1d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` X ) +e ( F ` Y ) ) = ( ( F ` 0 ) +e ( F ` Y ) ) ) |
107 |
104
|
fvoveq1d |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( F ` ( 0 x. Y ) ) ) |
108 |
103 106 107
|
3eqtr4rd |
|- ( ( X = 0 /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
109 |
|
simpl |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. ( 0 (,] 1 ) ) |
110 |
83 109
|
sselid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. RR+ ) |
111 |
110
|
relogcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` X ) e. RR ) |
112 |
111
|
renegcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( log ` X ) e. RR ) |
113 |
|
simpr |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. ( 0 (,] 1 ) ) |
114 |
83 113
|
sselid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. RR+ ) |
115 |
114
|
relogcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` Y ) e. RR ) |
116 |
115
|
renegcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( log ` Y ) e. RR ) |
117 |
|
rexadd |
|- ( ( -u ( log ` X ) e. RR /\ -u ( log ` Y ) e. RR ) -> ( -u ( log ` X ) +e -u ( log ` Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) |
118 |
112 116 117
|
syl2anc |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( -u ( log ` X ) +e -u ( log ` Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) |
119 |
1
|
xrge0iifcv |
|- ( X e. ( 0 (,] 1 ) -> ( F ` X ) = -u ( log ` X ) ) |
120 |
119 75
|
oveqan12d |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( ( F ` X ) +e ( F ` Y ) ) = ( -u ( log ` X ) +e -u ( log ` Y ) ) ) |
121 |
110
|
rpred |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. RR ) |
122 |
114
|
rpred |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. RR ) |
123 |
121 122
|
remulcld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) e. RR ) |
124 |
110
|
rpgt0d |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> 0 < X ) |
125 |
114
|
rpgt0d |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> 0 < Y ) |
126 |
121 122 124 125
|
mulgt0d |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> 0 < ( X x. Y ) ) |
127 |
|
iocssicc |
|- ( 0 (,] 1 ) C_ ( 0 [,] 1 ) |
128 |
127 109
|
sselid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> X e. ( 0 [,] 1 ) ) |
129 |
127 113
|
sselid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> Y e. ( 0 [,] 1 ) ) |
130 |
|
iimulcl |
|- ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 [,] 1 ) ) -> ( X x. Y ) e. ( 0 [,] 1 ) ) |
131 |
128 129 130
|
syl2anc |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) e. ( 0 [,] 1 ) ) |
132 |
|
elicc01 |
|- ( ( X x. Y ) e. ( 0 [,] 1 ) <-> ( ( X x. Y ) e. RR /\ 0 <_ ( X x. Y ) /\ ( X x. Y ) <_ 1 ) ) |
133 |
132
|
simp3bi |
|- ( ( X x. Y ) e. ( 0 [,] 1 ) -> ( X x. Y ) <_ 1 ) |
134 |
131 133
|
syl |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) <_ 1 ) |
135 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 1 e. RR ) -> ( ( X x. Y ) e. ( 0 (,] 1 ) <-> ( ( X x. Y ) e. RR /\ 0 < ( X x. Y ) /\ ( X x. Y ) <_ 1 ) ) ) |
136 |
3 77 135
|
mp2an |
|- ( ( X x. Y ) e. ( 0 (,] 1 ) <-> ( ( X x. Y ) e. RR /\ 0 < ( X x. Y ) /\ ( X x. Y ) <_ 1 ) ) |
137 |
123 126 134 136
|
syl3anbrc |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( X x. Y ) e. ( 0 (,] 1 ) ) |
138 |
1
|
xrge0iifcv |
|- ( ( X x. Y ) e. ( 0 (,] 1 ) -> ( F ` ( X x. Y ) ) = -u ( log ` ( X x. Y ) ) ) |
139 |
137 138
|
syl |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = -u ( log ` ( X x. Y ) ) ) |
140 |
110 114
|
relogmuld |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` ( X x. Y ) ) = ( ( log ` X ) + ( log ` Y ) ) ) |
141 |
140
|
negeqd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( log ` ( X x. Y ) ) = -u ( ( log ` X ) + ( log ` Y ) ) ) |
142 |
111
|
recnd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` X ) e. CC ) |
143 |
115
|
recnd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( log ` Y ) e. CC ) |
144 |
142 143
|
negdid |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> -u ( ( log ` X ) + ( log ` Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) |
145 |
139 141 144
|
3eqtrd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( -u ( log ` X ) + -u ( log ` Y ) ) ) |
146 |
118 120 145
|
3eqtr4rd |
|- ( ( X e. ( 0 (,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
147 |
108 146
|
jaoian |
|- ( ( ( X = 0 \/ X e. ( 0 (,] 1 ) ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
148 |
72 147
|
sylan |
|- ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 (,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
149 |
66 148
|
jaodan |
|- ( ( X e. ( 0 [,] 1 ) /\ ( Y = 0 \/ Y e. ( 0 (,] 1 ) ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |
150 |
13 149
|
sylan2 |
|- ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 [,] 1 ) ) -> ( F ` ( X x. Y ) ) = ( ( F ` X ) +e ( F ` Y ) ) ) |