| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) |
| 2 |
|
xrge0iifhmeo.k |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 3 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 4 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 5 |
|
neeq1 |
|- ( x = 1 -> ( x =/= 0 <-> 1 =/= 0 ) ) |
| 6 |
4 5
|
mpbiri |
|- ( x = 1 -> x =/= 0 ) |
| 7 |
6
|
neneqd |
|- ( x = 1 -> -. x = 0 ) |
| 8 |
7
|
iffalsed |
|- ( x = 1 -> if ( x = 0 , +oo , -u ( log ` x ) ) = -u ( log ` x ) ) |
| 9 |
|
fveq2 |
|- ( x = 1 -> ( log ` x ) = ( log ` 1 ) ) |
| 10 |
9
|
negeqd |
|- ( x = 1 -> -u ( log ` x ) = -u ( log ` 1 ) ) |
| 11 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 12 |
11
|
negeqi |
|- -u ( log ` 1 ) = -u 0 |
| 13 |
|
neg0 |
|- -u 0 = 0 |
| 14 |
12 13
|
eqtri |
|- -u ( log ` 1 ) = 0 |
| 15 |
14
|
a1i |
|- ( x = 1 -> -u ( log ` 1 ) = 0 ) |
| 16 |
8 10 15
|
3eqtrd |
|- ( x = 1 -> if ( x = 0 , +oo , -u ( log ` x ) ) = 0 ) |
| 17 |
|
c0ex |
|- 0 e. _V |
| 18 |
16 1 17
|
fvmpt |
|- ( 1 e. ( 0 [,] 1 ) -> ( F ` 1 ) = 0 ) |
| 19 |
3 18
|
ax-mp |
|- ( F ` 1 ) = 0 |