Metamath Proof Explorer


Theorem xrge0iif1

Description: Condition for the defined function, -u ( logx ) to be a monoid homomorphism. (Contributed by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) )
xrge0iifhmeo.k
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )
Assertion xrge0iif1
|- ( F ` 1 ) = 0

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1
 |-  F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) )
2 xrge0iifhmeo.k
 |-  J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )
3 1elunit
 |-  1 e. ( 0 [,] 1 )
4 ax-1ne0
 |-  1 =/= 0
5 neeq1
 |-  ( x = 1 -> ( x =/= 0 <-> 1 =/= 0 ) )
6 4 5 mpbiri
 |-  ( x = 1 -> x =/= 0 )
7 6 neneqd
 |-  ( x = 1 -> -. x = 0 )
8 7 iffalsed
 |-  ( x = 1 -> if ( x = 0 , +oo , -u ( log ` x ) ) = -u ( log ` x ) )
9 fveq2
 |-  ( x = 1 -> ( log ` x ) = ( log ` 1 ) )
10 9 negeqd
 |-  ( x = 1 -> -u ( log ` x ) = -u ( log ` 1 ) )
11 log1
 |-  ( log ` 1 ) = 0
12 11 negeqi
 |-  -u ( log ` 1 ) = -u 0
13 neg0
 |-  -u 0 = 0
14 12 13 eqtri
 |-  -u ( log ` 1 ) = 0
15 14 a1i
 |-  ( x = 1 -> -u ( log ` 1 ) = 0 )
16 8 10 15 3eqtrd
 |-  ( x = 1 -> if ( x = 0 , +oo , -u ( log ` x ) ) = 0 )
17 c0ex
 |-  0 e. _V
18 16 1 17 fvmpt
 |-  ( 1 e. ( 0 [,] 1 ) -> ( F ` 1 ) = 0 )
19 3 18 ax-mp
 |-  ( F ` 1 ) = 0