Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0iifhmeo.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) |
2 |
|
xrge0iifhmeo.k |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
3 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
4 |
|
ax-1ne0 |
|- 1 =/= 0 |
5 |
|
neeq1 |
|- ( x = 1 -> ( x =/= 0 <-> 1 =/= 0 ) ) |
6 |
4 5
|
mpbiri |
|- ( x = 1 -> x =/= 0 ) |
7 |
6
|
neneqd |
|- ( x = 1 -> -. x = 0 ) |
8 |
7
|
iffalsed |
|- ( x = 1 -> if ( x = 0 , +oo , -u ( log ` x ) ) = -u ( log ` x ) ) |
9 |
|
fveq2 |
|- ( x = 1 -> ( log ` x ) = ( log ` 1 ) ) |
10 |
9
|
negeqd |
|- ( x = 1 -> -u ( log ` x ) = -u ( log ` 1 ) ) |
11 |
|
log1 |
|- ( log ` 1 ) = 0 |
12 |
11
|
negeqi |
|- -u ( log ` 1 ) = -u 0 |
13 |
|
neg0 |
|- -u 0 = 0 |
14 |
12 13
|
eqtri |
|- -u ( log ` 1 ) = 0 |
15 |
14
|
a1i |
|- ( x = 1 -> -u ( log ` 1 ) = 0 ) |
16 |
8 10 15
|
3eqtrd |
|- ( x = 1 -> if ( x = 0 , +oo , -u ( log ` x ) ) = 0 ) |
17 |
|
c0ex |
|- 0 e. _V |
18 |
16 1 17
|
fvmpt |
|- ( 1 e. ( 0 [,] 1 ) -> ( F ` 1 ) = 0 ) |
19 |
3 18
|
ax-mp |
|- ( F ` 1 ) = 0 |