Metamath Proof Explorer


Theorem xrge0iif1

Description: Condition for the defined function, -u ( logx ) to be a monoid homomorphism. (Contributed by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
xrge0iifhmeo.k J = ordTop 𝑡 0 +∞
Assertion xrge0iif1 F 1 = 0

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
2 xrge0iifhmeo.k J = ordTop 𝑡 0 +∞
3 1elunit 1 0 1
4 ax-1ne0 1 0
5 neeq1 x = 1 x 0 1 0
6 4 5 mpbiri x = 1 x 0
7 6 neneqd x = 1 ¬ x = 0
8 7 iffalsed x = 1 if x = 0 +∞ log x = log x
9 fveq2 x = 1 log x = log 1
10 9 negeqd x = 1 log x = log 1
11 log1 log 1 = 0
12 11 negeqi log 1 = 0
13 neg0 0 = 0
14 12 13 eqtri log 1 = 0
15 14 a1i x = 1 log 1 = 0
16 8 10 15 3eqtrd x = 1 if x = 0 +∞ log x = 0
17 c0ex 0 V
18 16 1 17 fvmpt 1 0 1 F 1 = 0
19 3 18 ax-mp F 1 = 0