Metamath Proof Explorer


Theorem xrge0iif1

Description: Condition for the defined function, -u ( logx ) to be a monoid homomorphism. (Contributed by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1 F=x01ifx=0+∞logx
xrge0iifhmeo.k J=ordTop𝑡0+∞
Assertion xrge0iif1 F1=0

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F=x01ifx=0+∞logx
2 xrge0iifhmeo.k J=ordTop𝑡0+∞
3 1elunit 101
4 ax-1ne0 10
5 neeq1 x=1x010
6 4 5 mpbiri x=1x0
7 6 neneqd x=1¬x=0
8 7 iffalsed x=1ifx=0+∞logx=logx
9 fveq2 x=1logx=log1
10 9 negeqd x=1logx=log1
11 log1 log1=0
12 11 negeqi log1=0
13 neg0 0=0
14 12 13 eqtri log1=0
15 14 a1i x=1log1=0
16 8 10 15 3eqtrd x=1ifx=0+∞logx=0
17 c0ex 0V
18 16 1 17 fvmpt 101F1=0
19 3 18 ax-mp F1=0