Metamath Proof Explorer


Theorem xrge0iif1

Description: Condition for the defined function, -u ( logx ) to be a monoid homomorphism. (Contributed by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) )
xrge0iifhmeo.k 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
Assertion xrge0iif1 ( 𝐹 ‘ 1 ) = 0

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) )
2 xrge0iifhmeo.k 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
3 1elunit 1 ∈ ( 0 [,] 1 )
4 ax-1ne0 1 ≠ 0
5 neeq1 ( 𝑥 = 1 → ( 𝑥 ≠ 0 ↔ 1 ≠ 0 ) )
6 4 5 mpbiri ( 𝑥 = 1 → 𝑥 ≠ 0 )
7 6 neneqd ( 𝑥 = 1 → ¬ 𝑥 = 0 )
8 7 iffalsed ( 𝑥 = 1 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = - ( log ‘ 𝑥 ) )
9 fveq2 ( 𝑥 = 1 → ( log ‘ 𝑥 ) = ( log ‘ 1 ) )
10 9 negeqd ( 𝑥 = 1 → - ( log ‘ 𝑥 ) = - ( log ‘ 1 ) )
11 log1 ( log ‘ 1 ) = 0
12 11 negeqi - ( log ‘ 1 ) = - 0
13 neg0 - 0 = 0
14 12 13 eqtri - ( log ‘ 1 ) = 0
15 14 a1i ( 𝑥 = 1 → - ( log ‘ 1 ) = 0 )
16 8 10 15 3eqtrd ( 𝑥 = 1 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = 0 )
17 c0ex 0 ∈ V
18 16 1 17 fvmpt ( 1 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 1 ) = 0 )
19 3 18 ax-mp ( 𝐹 ‘ 1 ) = 0