| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) |
| 2 |
|
xrge0iifhmeo.k |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 3 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 4 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 5 |
|
neeq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ≠ 0 ↔ 1 ≠ 0 ) ) |
| 6 |
4 5
|
mpbiri |
⊢ ( 𝑥 = 1 → 𝑥 ≠ 0 ) |
| 7 |
6
|
neneqd |
⊢ ( 𝑥 = 1 → ¬ 𝑥 = 0 ) |
| 8 |
7
|
iffalsed |
⊢ ( 𝑥 = 1 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = - ( log ‘ 𝑥 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( log ‘ 𝑥 ) = ( log ‘ 1 ) ) |
| 10 |
9
|
negeqd |
⊢ ( 𝑥 = 1 → - ( log ‘ 𝑥 ) = - ( log ‘ 1 ) ) |
| 11 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 12 |
11
|
negeqi |
⊢ - ( log ‘ 1 ) = - 0 |
| 13 |
|
neg0 |
⊢ - 0 = 0 |
| 14 |
12 13
|
eqtri |
⊢ - ( log ‘ 1 ) = 0 |
| 15 |
14
|
a1i |
⊢ ( 𝑥 = 1 → - ( log ‘ 1 ) = 0 ) |
| 16 |
8 10 15
|
3eqtrd |
⊢ ( 𝑥 = 1 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = 0 ) |
| 17 |
|
c0ex |
⊢ 0 ∈ V |
| 18 |
16 1 17
|
fvmpt |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 1 ) = 0 ) |
| 19 |
3 18
|
ax-mp |
⊢ ( 𝐹 ‘ 1 ) = 0 |