| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 0 , +oo , -u ( log ` x ) ) ) |
| 2 |
|
xrge0iifhmeo.k |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 3 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) = ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) |
| 4 |
3
|
iistmd |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) e. TopMnd |
| 5 |
|
tmdmnd |
|- ( ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) e. TopMnd -> ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) e. Mnd ) |
| 6 |
4 5
|
ax-mp |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) e. Mnd |
| 7 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| 8 |
|
cmnmnd |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
| 9 |
7 8
|
ax-mp |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
| 10 |
6 9
|
pm3.2i |
|- ( ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) e. Mnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
| 11 |
1
|
xrge0iifcnv |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 0 , ( exp ` -u y ) ) ) ) |
| 12 |
11
|
simpli |
|- F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) |
| 13 |
|
f1of |
|- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) -> F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) ) |
| 14 |
12 13
|
ax-mp |
|- F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) |
| 15 |
1 2
|
xrge0iifhom |
|- ( ( y e. ( 0 [,] 1 ) /\ z e. ( 0 [,] 1 ) ) -> ( F ` ( y x. z ) ) = ( ( F ` y ) +e ( F ` z ) ) ) |
| 16 |
15
|
rgen2 |
|- A. y e. ( 0 [,] 1 ) A. z e. ( 0 [,] 1 ) ( F ` ( y x. z ) ) = ( ( F ` y ) +e ( F ` z ) ) |
| 17 |
1 2
|
xrge0iif1 |
|- ( F ` 1 ) = 0 |
| 18 |
14 16 17
|
3pm3.2i |
|- ( F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) /\ A. y e. ( 0 [,] 1 ) A. z e. ( 0 [,] 1 ) ( F ` ( y x. z ) ) = ( ( F ` y ) +e ( F ` z ) ) /\ ( F ` 1 ) = 0 ) |
| 19 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
| 20 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 21 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 22 |
20 21
|
mgpbas |
|- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 23 |
3 22
|
ressbas2 |
|- ( ( 0 [,] 1 ) C_ CC -> ( 0 [,] 1 ) = ( Base ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) ) |
| 24 |
19 23
|
ax-mp |
|- ( 0 [,] 1 ) = ( Base ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) |
| 25 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 26 |
|
cnfldex |
|- CCfld e. _V |
| 27 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
| 28 |
|
eqid |
|- ( CCfld |`s ( 0 [,] 1 ) ) = ( CCfld |`s ( 0 [,] 1 ) ) |
| 29 |
28 20
|
mgpress |
|- ( ( CCfld e. _V /\ ( 0 [,] 1 ) e. _V ) -> ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,] 1 ) ) ) ) |
| 30 |
26 27 29
|
mp2an |
|- ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,] 1 ) ) ) |
| 31 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 32 |
28 31
|
ressmulr |
|- ( ( 0 [,] 1 ) e. _V -> x. = ( .r ` ( CCfld |`s ( 0 [,] 1 ) ) ) ) |
| 33 |
27 32
|
ax-mp |
|- x. = ( .r ` ( CCfld |`s ( 0 [,] 1 ) ) ) |
| 34 |
30 33
|
mgpplusg |
|- x. = ( +g ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) |
| 35 |
|
xrge0plusg |
|- +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 36 |
|
cnring |
|- CCfld e. Ring |
| 37 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 38 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
| 39 |
3 21 38
|
ringidss |
|- ( ( CCfld e. Ring /\ ( 0 [,] 1 ) C_ CC /\ 1 e. ( 0 [,] 1 ) ) -> 1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) ) |
| 40 |
36 19 37 39
|
mp3an |
|- 1 = ( 0g ` ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) ) |
| 41 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 42 |
24 25 34 35 40 41
|
ismhm |
|- ( F e. ( ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) MndHom ( RR*s |`s ( 0 [,] +oo ) ) ) <-> ( ( ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) e. Mnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) /\ ( F : ( 0 [,] 1 ) --> ( 0 [,] +oo ) /\ A. y e. ( 0 [,] 1 ) A. z e. ( 0 [,] 1 ) ( F ` ( y x. z ) ) = ( ( F ` y ) +e ( F ` z ) ) /\ ( F ` 1 ) = 0 ) ) ) |
| 43 |
10 18 42
|
mpbir2an |
|- F e. ( ( ( mulGrp ` CCfld ) |`s ( 0 [,] 1 ) ) MndHom ( RR*s |`s ( 0 [,] +oo ) ) ) |