Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0iifhmeo.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) |
2 |
|
xrge0iifhmeo.k |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
3 |
|
0xr |
⊢ 0 ∈ ℝ* |
4 |
|
1xr |
⊢ 1 ∈ ℝ* |
5 |
|
0le1 |
⊢ 0 ≤ 1 |
6 |
|
snunioc |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1 ) → ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) ) |
7 |
3 4 5 6
|
mp3an |
⊢ ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) |
8 |
7
|
eleq2i |
⊢ ( 𝑌 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ 𝑌 ∈ ( 0 [,] 1 ) ) |
9 |
|
elun |
⊢ ( 𝑌 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ ( 𝑌 ∈ { 0 } ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) |
10 |
8 9
|
bitr3i |
⊢ ( 𝑌 ∈ ( 0 [,] 1 ) ↔ ( 𝑌 ∈ { 0 } ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) |
11 |
|
elsni |
⊢ ( 𝑌 ∈ { 0 } → 𝑌 = 0 ) |
12 |
11
|
orim1i |
⊢ ( ( 𝑌 ∈ { 0 } ∨ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑌 = 0 ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) |
13 |
10 12
|
sylbi |
⊢ ( 𝑌 ∈ ( 0 [,] 1 ) → ( 𝑌 = 0 ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) |
14 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
15 |
|
iftrue |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = +∞ ) |
16 |
|
pnfex |
⊢ +∞ ∈ V |
17 |
15 1 16
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 0 ) = +∞ ) |
18 |
14 17
|
ax-mp |
⊢ ( 𝐹 ‘ 0 ) = +∞ |
19 |
18
|
oveq2i |
⊢ ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 0 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 +∞ ) |
20 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( log ‘ 𝑥 ) = ( log ‘ 𝑋 ) ) |
22 |
21
|
negeqd |
⊢ ( 𝑥 = 𝑋 → - ( log ‘ 𝑥 ) = - ( log ‘ 𝑋 ) ) |
23 |
20 22
|
ifbieq2d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ) |
24 |
|
negex |
⊢ - ( log ‘ 𝑋 ) ∈ V |
25 |
16 24
|
ifex |
⊢ if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ∈ V |
26 |
23 1 25
|
fvmpt |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑋 ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ) |
27 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
28 |
27
|
a1i |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 = 0 ) → +∞ ∈ ℝ* ) |
29 |
|
elunitrn |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → 𝑋 ∈ ℝ ) |
30 |
29
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 𝑋 ∈ ℝ ) |
31 |
|
elunitge0 |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → 0 ≤ 𝑋 ) |
32 |
31
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 0 ≤ 𝑋 ) |
33 |
|
simpr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → ¬ 𝑋 = 0 ) |
34 |
33
|
neqned |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 𝑋 ≠ 0 ) |
35 |
30 32 34
|
ne0gt0d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 0 < 𝑋 ) |
36 |
30 35
|
elrpd |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 𝑋 ∈ ℝ+ ) |
37 |
36
|
relogcld |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → ( log ‘ 𝑋 ) ∈ ℝ ) |
38 |
37
|
renegcld |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → - ( log ‘ 𝑋 ) ∈ ℝ ) |
39 |
38
|
rexrd |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → - ( log ‘ 𝑋 ) ∈ ℝ* ) |
40 |
28 39
|
ifclda |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ∈ ℝ* ) |
41 |
26 40
|
eqeltrd |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ* ) |
42 |
41
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ* ) |
43 |
|
neeq1 |
⊢ ( +∞ = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) → ( +∞ ≠ -∞ ↔ if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ≠ -∞ ) ) |
44 |
|
neeq1 |
⊢ ( - ( log ‘ 𝑋 ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) → ( - ( log ‘ 𝑋 ) ≠ -∞ ↔ if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ≠ -∞ ) ) |
45 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
46 |
45
|
a1i |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 = 0 ) → +∞ ≠ -∞ ) |
47 |
38
|
renemnfd |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → - ( log ‘ 𝑋 ) ≠ -∞ ) |
48 |
43 44 46 47
|
ifbothda |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ≠ -∞ ) |
49 |
26 48
|
eqnetrd |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑋 ) ≠ -∞ ) |
50 |
49
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 𝑋 ) ≠ -∞ ) |
51 |
|
xaddpnf1 |
⊢ ( ( ( 𝐹 ‘ 𝑋 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑋 ) ≠ -∞ ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 +∞ ) = +∞ ) |
52 |
42 50 51
|
syl2anc |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 +∞ ) = +∞ ) |
53 |
19 52
|
eqtrid |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 0 ) ) = +∞ ) |
54 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
55 |
|
simpl |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → 𝑋 ∈ ( 0 [,] 1 ) ) |
56 |
54 55
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → 𝑋 ∈ ℂ ) |
57 |
56
|
mul01d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝑋 · 0 ) = 0 ) |
58 |
57
|
fveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ ( 𝑋 · 0 ) ) = ( 𝐹 ‘ 0 ) ) |
59 |
58 18
|
eqtrdi |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ ( 𝑋 · 0 ) ) = +∞ ) |
60 |
53 59
|
eqtr4d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 0 ) ) = ( 𝐹 ‘ ( 𝑋 · 0 ) ) ) |
61 |
|
simpr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → 𝑌 = 0 ) |
62 |
61
|
fveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 0 ) ) |
63 |
62
|
oveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 0 ) ) ) |
64 |
61
|
oveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) ) |
65 |
64
|
fveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 0 ) ) ) |
66 |
60 63 65
|
3eqtr4rd |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
67 |
7
|
eleq2i |
⊢ ( 𝑋 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ 𝑋 ∈ ( 0 [,] 1 ) ) |
68 |
|
elun |
⊢ ( 𝑋 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ ( 𝑋 ∈ { 0 } ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ) |
69 |
67 68
|
bitr3i |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ { 0 } ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ) |
70 |
|
elsni |
⊢ ( 𝑋 ∈ { 0 } → 𝑋 = 0 ) |
71 |
70
|
orim1i |
⊢ ( ( 𝑋 ∈ { 0 } ∨ 𝑋 ∈ ( 0 (,] 1 ) ) → ( 𝑋 = 0 ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ) |
72 |
69 71
|
sylbi |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝑋 = 0 ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ) |
73 |
18
|
oveq1i |
⊢ ( ( 𝐹 ‘ 0 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( +∞ +𝑒 ( 𝐹 ‘ 𝑌 ) ) |
74 |
|
simpr |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ( 0 (,] 1 ) ) |
75 |
1
|
xrge0iifcv |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑌 ) = - ( log ‘ 𝑌 ) ) |
76 |
|
0le0 |
⊢ 0 ≤ 0 |
77 |
|
1re |
⊢ 1 ∈ ℝ |
78 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
79 |
77 78
|
ax-mp |
⊢ 1 < +∞ |
80 |
|
iocssioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 1 < +∞ ) ) → ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ ) ) |
81 |
3 27 76 79 80
|
mp4an |
⊢ ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ ) |
82 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
83 |
81 82
|
sseqtri |
⊢ ( 0 (,] 1 ) ⊆ ℝ+ |
84 |
83
|
sseli |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → 𝑌 ∈ ℝ+ ) |
85 |
84
|
relogcld |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( log ‘ 𝑌 ) ∈ ℝ ) |
86 |
85
|
renegcld |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → - ( log ‘ 𝑌 ) ∈ ℝ ) |
87 |
75 86
|
eqeltrd |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
88 |
87
|
rexrd |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ* ) |
89 |
74 88
|
syl |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ* ) |
90 |
87
|
renemnfd |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑌 ) ≠ -∞ ) |
91 |
74 90
|
syl |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ 𝑌 ) ≠ -∞ ) |
92 |
|
xaddpnf2 |
⊢ ( ( ( 𝐹 ‘ 𝑌 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑌 ) ≠ -∞ ) → ( +∞ +𝑒 ( 𝐹 ‘ 𝑌 ) ) = +∞ ) |
93 |
89 91 92
|
syl2anc |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( +∞ +𝑒 ( 𝐹 ‘ 𝑌 ) ) = +∞ ) |
94 |
73 93
|
eqtrid |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ 0 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = +∞ ) |
95 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
96 |
83 95
|
sstri |
⊢ ( 0 (,] 1 ) ⊆ ℝ |
97 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
98 |
96 97
|
sstri |
⊢ ( 0 (,] 1 ) ⊆ ℂ |
99 |
98 74
|
sselid |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ℂ ) |
100 |
99
|
mul02d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 0 · 𝑌 ) = 0 ) |
101 |
100
|
fveq2d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 0 · 𝑌 ) ) = ( 𝐹 ‘ 0 ) ) |
102 |
101 18
|
eqtrdi |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 0 · 𝑌 ) ) = +∞ ) |
103 |
94 102
|
eqtr4d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ 0 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 0 · 𝑌 ) ) ) |
104 |
|
simpl |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 = 0 ) |
105 |
104
|
fveq2d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 0 ) ) |
106 |
105
|
oveq1d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 0 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
107 |
104
|
fvoveq1d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝐹 ‘ ( 0 · 𝑌 ) ) ) |
108 |
103 106 107
|
3eqtr4rd |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
109 |
|
simpl |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 ∈ ( 0 (,] 1 ) ) |
110 |
83 109
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 ∈ ℝ+ ) |
111 |
110
|
relogcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑋 ) ∈ ℝ ) |
112 |
111
|
renegcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → - ( log ‘ 𝑋 ) ∈ ℝ ) |
113 |
|
simpr |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ( 0 (,] 1 ) ) |
114 |
83 113
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ℝ+ ) |
115 |
114
|
relogcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑌 ) ∈ ℝ ) |
116 |
115
|
renegcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → - ( log ‘ 𝑌 ) ∈ ℝ ) |
117 |
|
rexadd |
⊢ ( ( - ( log ‘ 𝑋 ) ∈ ℝ ∧ - ( log ‘ 𝑌 ) ∈ ℝ ) → ( - ( log ‘ 𝑋 ) +𝑒 - ( log ‘ 𝑌 ) ) = ( - ( log ‘ 𝑋 ) + - ( log ‘ 𝑌 ) ) ) |
118 |
112 116 117
|
syl2anc |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( - ( log ‘ 𝑋 ) +𝑒 - ( log ‘ 𝑌 ) ) = ( - ( log ‘ 𝑋 ) + - ( log ‘ 𝑌 ) ) ) |
119 |
1
|
xrge0iifcv |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑋 ) = - ( log ‘ 𝑋 ) ) |
120 |
119 75
|
oveqan12d |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( - ( log ‘ 𝑋 ) +𝑒 - ( log ‘ 𝑌 ) ) ) |
121 |
110
|
rpred |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 ∈ ℝ ) |
122 |
114
|
rpred |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ℝ ) |
123 |
121 122
|
remulcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑋 · 𝑌 ) ∈ ℝ ) |
124 |
110
|
rpgt0d |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 0 < 𝑋 ) |
125 |
114
|
rpgt0d |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 0 < 𝑌 ) |
126 |
121 122 124 125
|
mulgt0d |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 0 < ( 𝑋 · 𝑌 ) ) |
127 |
|
iocssicc |
⊢ ( 0 (,] 1 ) ⊆ ( 0 [,] 1 ) |
128 |
127 109
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 ∈ ( 0 [,] 1 ) ) |
129 |
127 113
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ( 0 [,] 1 ) ) |
130 |
|
iimulcl |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 ∈ ( 0 [,] 1 ) ) → ( 𝑋 · 𝑌 ) ∈ ( 0 [,] 1 ) ) |
131 |
128 129 130
|
syl2anc |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑋 · 𝑌 ) ∈ ( 0 [,] 1 ) ) |
132 |
|
elicc01 |
⊢ ( ( 𝑋 · 𝑌 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑋 · 𝑌 ) ∈ ℝ ∧ 0 ≤ ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ≤ 1 ) ) |
133 |
132
|
simp3bi |
⊢ ( ( 𝑋 · 𝑌 ) ∈ ( 0 [,] 1 ) → ( 𝑋 · 𝑌 ) ≤ 1 ) |
134 |
131 133
|
syl |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑋 · 𝑌 ) ≤ 1 ) |
135 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( ( 𝑋 · 𝑌 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝑋 · 𝑌 ) ∈ ℝ ∧ 0 < ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ≤ 1 ) ) ) |
136 |
3 77 135
|
mp2an |
⊢ ( ( 𝑋 · 𝑌 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝑋 · 𝑌 ) ∈ ℝ ∧ 0 < ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ≤ 1 ) ) |
137 |
123 126 134 136
|
syl3anbrc |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑋 · 𝑌 ) ∈ ( 0 (,] 1 ) ) |
138 |
1
|
xrge0iifcv |
⊢ ( ( 𝑋 · 𝑌 ) ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = - ( log ‘ ( 𝑋 · 𝑌 ) ) ) |
139 |
137 138
|
syl |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = - ( log ‘ ( 𝑋 · 𝑌 ) ) ) |
140 |
110 114
|
relogmuld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ ( 𝑋 · 𝑌 ) ) = ( ( log ‘ 𝑋 ) + ( log ‘ 𝑌 ) ) ) |
141 |
140
|
negeqd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → - ( log ‘ ( 𝑋 · 𝑌 ) ) = - ( ( log ‘ 𝑋 ) + ( log ‘ 𝑌 ) ) ) |
142 |
111
|
recnd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
143 |
115
|
recnd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑌 ) ∈ ℂ ) |
144 |
142 143
|
negdid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → - ( ( log ‘ 𝑋 ) + ( log ‘ 𝑌 ) ) = ( - ( log ‘ 𝑋 ) + - ( log ‘ 𝑌 ) ) ) |
145 |
139 141 144
|
3eqtrd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( - ( log ‘ 𝑋 ) + - ( log ‘ 𝑌 ) ) ) |
146 |
118 120 145
|
3eqtr4rd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
147 |
108 146
|
jaoian |
⊢ ( ( ( 𝑋 = 0 ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
148 |
72 147
|
sylan |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
149 |
66 148
|
jaodan |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ( 𝑌 = 0 ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
150 |
13 149
|
sylan2 |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |