| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) |
| 2 |
|
xrge0iifhmeo.k |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 3 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 4 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 5 |
|
0le1 |
⊢ 0 ≤ 1 |
| 6 |
|
snunioc |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1 ) → ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) ) |
| 7 |
3 4 5 6
|
mp3an |
⊢ ( { 0 } ∪ ( 0 (,] 1 ) ) = ( 0 [,] 1 ) |
| 8 |
7
|
eleq2i |
⊢ ( 𝑌 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ 𝑌 ∈ ( 0 [,] 1 ) ) |
| 9 |
|
elun |
⊢ ( 𝑌 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ ( 𝑌 ∈ { 0 } ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) |
| 10 |
8 9
|
bitr3i |
⊢ ( 𝑌 ∈ ( 0 [,] 1 ) ↔ ( 𝑌 ∈ { 0 } ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) |
| 11 |
|
elsni |
⊢ ( 𝑌 ∈ { 0 } → 𝑌 = 0 ) |
| 12 |
11
|
orim1i |
⊢ ( ( 𝑌 ∈ { 0 } ∨ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑌 = 0 ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) |
| 13 |
10 12
|
sylbi |
⊢ ( 𝑌 ∈ ( 0 [,] 1 ) → ( 𝑌 = 0 ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) |
| 14 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 15 |
|
iftrue |
⊢ ( 𝑥 = 0 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = +∞ ) |
| 16 |
|
pnfex |
⊢ +∞ ∈ V |
| 17 |
15 1 16
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 0 ) = +∞ ) |
| 18 |
14 17
|
ax-mp |
⊢ ( 𝐹 ‘ 0 ) = +∞ |
| 19 |
18
|
oveq2i |
⊢ ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 0 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 +∞ ) |
| 20 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 0 ↔ 𝑋 = 0 ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( log ‘ 𝑥 ) = ( log ‘ 𝑋 ) ) |
| 22 |
21
|
negeqd |
⊢ ( 𝑥 = 𝑋 → - ( log ‘ 𝑥 ) = - ( log ‘ 𝑋 ) ) |
| 23 |
20 22
|
ifbieq2d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ) |
| 24 |
|
negex |
⊢ - ( log ‘ 𝑋 ) ∈ V |
| 25 |
16 24
|
ifex |
⊢ if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ∈ V |
| 26 |
23 1 25
|
fvmpt |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑋 ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ) |
| 27 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 28 |
27
|
a1i |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 = 0 ) → +∞ ∈ ℝ* ) |
| 29 |
|
elunitrn |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → 𝑋 ∈ ℝ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 𝑋 ∈ ℝ ) |
| 31 |
|
elunitge0 |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → 0 ≤ 𝑋 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 0 ≤ 𝑋 ) |
| 33 |
|
simpr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → ¬ 𝑋 = 0 ) |
| 34 |
33
|
neqned |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 𝑋 ≠ 0 ) |
| 35 |
30 32 34
|
ne0gt0d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 0 < 𝑋 ) |
| 36 |
30 35
|
elrpd |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → 𝑋 ∈ ℝ+ ) |
| 37 |
36
|
relogcld |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → ( log ‘ 𝑋 ) ∈ ℝ ) |
| 38 |
37
|
renegcld |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → - ( log ‘ 𝑋 ) ∈ ℝ ) |
| 39 |
38
|
rexrd |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → - ( log ‘ 𝑋 ) ∈ ℝ* ) |
| 40 |
28 39
|
ifclda |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ∈ ℝ* ) |
| 41 |
26 40
|
eqeltrd |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ* ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ* ) |
| 43 |
|
neeq1 |
⊢ ( +∞ = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) → ( +∞ ≠ -∞ ↔ if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ≠ -∞ ) ) |
| 44 |
|
neeq1 |
⊢ ( - ( log ‘ 𝑋 ) = if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) → ( - ( log ‘ 𝑋 ) ≠ -∞ ↔ if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ≠ -∞ ) ) |
| 45 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
| 46 |
45
|
a1i |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 = 0 ) → +∞ ≠ -∞ ) |
| 47 |
38
|
renemnfd |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 = 0 ) → - ( log ‘ 𝑋 ) ≠ -∞ ) |
| 48 |
43 44 46 47
|
ifbothda |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → if ( 𝑋 = 0 , +∞ , - ( log ‘ 𝑋 ) ) ≠ -∞ ) |
| 49 |
26 48
|
eqnetrd |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑋 ) ≠ -∞ ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 𝑋 ) ≠ -∞ ) |
| 51 |
|
xaddpnf1 |
⊢ ( ( ( 𝐹 ‘ 𝑋 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑋 ) ≠ -∞ ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 +∞ ) = +∞ ) |
| 52 |
42 50 51
|
syl2anc |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 +∞ ) = +∞ ) |
| 53 |
19 52
|
eqtrid |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 0 ) ) = +∞ ) |
| 54 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 55 |
|
simpl |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → 𝑋 ∈ ( 0 [,] 1 ) ) |
| 56 |
54 55
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → 𝑋 ∈ ℂ ) |
| 57 |
56
|
mul01d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝑋 · 0 ) = 0 ) |
| 58 |
57
|
fveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ ( 𝑋 · 0 ) ) = ( 𝐹 ‘ 0 ) ) |
| 59 |
58 18
|
eqtrdi |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ ( 𝑋 · 0 ) ) = +∞ ) |
| 60 |
53 59
|
eqtr4d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 0 ) ) = ( 𝐹 ‘ ( 𝑋 · 0 ) ) ) |
| 61 |
|
simpr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → 𝑌 = 0 ) |
| 62 |
61
|
fveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 0 ) ) |
| 63 |
62
|
oveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 0 ) ) ) |
| 64 |
61
|
oveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) ) |
| 65 |
64
|
fveq2d |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 · 0 ) ) ) |
| 66 |
60 63 65
|
3eqtr4rd |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 = 0 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
| 67 |
7
|
eleq2i |
⊢ ( 𝑋 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ 𝑋 ∈ ( 0 [,] 1 ) ) |
| 68 |
|
elun |
⊢ ( 𝑋 ∈ ( { 0 } ∪ ( 0 (,] 1 ) ) ↔ ( 𝑋 ∈ { 0 } ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ) |
| 69 |
67 68
|
bitr3i |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ { 0 } ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ) |
| 70 |
|
elsni |
⊢ ( 𝑋 ∈ { 0 } → 𝑋 = 0 ) |
| 71 |
70
|
orim1i |
⊢ ( ( 𝑋 ∈ { 0 } ∨ 𝑋 ∈ ( 0 (,] 1 ) ) → ( 𝑋 = 0 ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ) |
| 72 |
69 71
|
sylbi |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝑋 = 0 ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ) |
| 73 |
18
|
oveq1i |
⊢ ( ( 𝐹 ‘ 0 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( +∞ +𝑒 ( 𝐹 ‘ 𝑌 ) ) |
| 74 |
|
simpr |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ( 0 (,] 1 ) ) |
| 75 |
1
|
xrge0iifcv |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑌 ) = - ( log ‘ 𝑌 ) ) |
| 76 |
|
0le0 |
⊢ 0 ≤ 0 |
| 77 |
|
1re |
⊢ 1 ∈ ℝ |
| 78 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
| 79 |
77 78
|
ax-mp |
⊢ 1 < +∞ |
| 80 |
|
iocssioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 1 < +∞ ) ) → ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ ) ) |
| 81 |
3 27 76 79 80
|
mp4an |
⊢ ( 0 (,] 1 ) ⊆ ( 0 (,) +∞ ) |
| 82 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 83 |
81 82
|
sseqtri |
⊢ ( 0 (,] 1 ) ⊆ ℝ+ |
| 84 |
83
|
sseli |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → 𝑌 ∈ ℝ+ ) |
| 85 |
84
|
relogcld |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( log ‘ 𝑌 ) ∈ ℝ ) |
| 86 |
85
|
renegcld |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → - ( log ‘ 𝑌 ) ∈ ℝ ) |
| 87 |
75 86
|
eqeltrd |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ ) |
| 88 |
87
|
rexrd |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ* ) |
| 89 |
74 88
|
syl |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ 𝑌 ) ∈ ℝ* ) |
| 90 |
87
|
renemnfd |
⊢ ( 𝑌 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑌 ) ≠ -∞ ) |
| 91 |
74 90
|
syl |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ 𝑌 ) ≠ -∞ ) |
| 92 |
|
xaddpnf2 |
⊢ ( ( ( 𝐹 ‘ 𝑌 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑌 ) ≠ -∞ ) → ( +∞ +𝑒 ( 𝐹 ‘ 𝑌 ) ) = +∞ ) |
| 93 |
89 91 92
|
syl2anc |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( +∞ +𝑒 ( 𝐹 ‘ 𝑌 ) ) = +∞ ) |
| 94 |
73 93
|
eqtrid |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ 0 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = +∞ ) |
| 95 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 96 |
83 95
|
sstri |
⊢ ( 0 (,] 1 ) ⊆ ℝ |
| 97 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 98 |
96 97
|
sstri |
⊢ ( 0 (,] 1 ) ⊆ ℂ |
| 99 |
98 74
|
sselid |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ℂ ) |
| 100 |
99
|
mul02d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 0 · 𝑌 ) = 0 ) |
| 101 |
100
|
fveq2d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 0 · 𝑌 ) ) = ( 𝐹 ‘ 0 ) ) |
| 102 |
101 18
|
eqtrdi |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 0 · 𝑌 ) ) = +∞ ) |
| 103 |
94 102
|
eqtr4d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ 0 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ ( 0 · 𝑌 ) ) ) |
| 104 |
|
simpl |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 = 0 ) |
| 105 |
104
|
fveq2d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 0 ) ) |
| 106 |
105
|
oveq1d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 0 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
| 107 |
104
|
fvoveq1d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( 𝐹 ‘ ( 0 · 𝑌 ) ) ) |
| 108 |
103 106 107
|
3eqtr4rd |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
| 109 |
|
simpl |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 ∈ ( 0 (,] 1 ) ) |
| 110 |
83 109
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 ∈ ℝ+ ) |
| 111 |
110
|
relogcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑋 ) ∈ ℝ ) |
| 112 |
111
|
renegcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → - ( log ‘ 𝑋 ) ∈ ℝ ) |
| 113 |
|
simpr |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ( 0 (,] 1 ) ) |
| 114 |
83 113
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ℝ+ ) |
| 115 |
114
|
relogcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑌 ) ∈ ℝ ) |
| 116 |
115
|
renegcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → - ( log ‘ 𝑌 ) ∈ ℝ ) |
| 117 |
|
rexadd |
⊢ ( ( - ( log ‘ 𝑋 ) ∈ ℝ ∧ - ( log ‘ 𝑌 ) ∈ ℝ ) → ( - ( log ‘ 𝑋 ) +𝑒 - ( log ‘ 𝑌 ) ) = ( - ( log ‘ 𝑋 ) + - ( log ‘ 𝑌 ) ) ) |
| 118 |
112 116 117
|
syl2anc |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( - ( log ‘ 𝑋 ) +𝑒 - ( log ‘ 𝑌 ) ) = ( - ( log ‘ 𝑋 ) + - ( log ‘ 𝑌 ) ) ) |
| 119 |
1
|
xrge0iifcv |
⊢ ( 𝑋 ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ 𝑋 ) = - ( log ‘ 𝑋 ) ) |
| 120 |
119 75
|
oveqan12d |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) = ( - ( log ‘ 𝑋 ) +𝑒 - ( log ‘ 𝑌 ) ) ) |
| 121 |
110
|
rpred |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 ∈ ℝ ) |
| 122 |
114
|
rpred |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ℝ ) |
| 123 |
121 122
|
remulcld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑋 · 𝑌 ) ∈ ℝ ) |
| 124 |
110
|
rpgt0d |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 0 < 𝑋 ) |
| 125 |
114
|
rpgt0d |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 0 < 𝑌 ) |
| 126 |
121 122 124 125
|
mulgt0d |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 0 < ( 𝑋 · 𝑌 ) ) |
| 127 |
|
iocssicc |
⊢ ( 0 (,] 1 ) ⊆ ( 0 [,] 1 ) |
| 128 |
127 109
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑋 ∈ ( 0 [,] 1 ) ) |
| 129 |
127 113
|
sselid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → 𝑌 ∈ ( 0 [,] 1 ) ) |
| 130 |
|
iimulcl |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 ∈ ( 0 [,] 1 ) ) → ( 𝑋 · 𝑌 ) ∈ ( 0 [,] 1 ) ) |
| 131 |
128 129 130
|
syl2anc |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑋 · 𝑌 ) ∈ ( 0 [,] 1 ) ) |
| 132 |
|
elicc01 |
⊢ ( ( 𝑋 · 𝑌 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑋 · 𝑌 ) ∈ ℝ ∧ 0 ≤ ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ≤ 1 ) ) |
| 133 |
132
|
simp3bi |
⊢ ( ( 𝑋 · 𝑌 ) ∈ ( 0 [,] 1 ) → ( 𝑋 · 𝑌 ) ≤ 1 ) |
| 134 |
131 133
|
syl |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑋 · 𝑌 ) ≤ 1 ) |
| 135 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( ( 𝑋 · 𝑌 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝑋 · 𝑌 ) ∈ ℝ ∧ 0 < ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ≤ 1 ) ) ) |
| 136 |
3 77 135
|
mp2an |
⊢ ( ( 𝑋 · 𝑌 ) ∈ ( 0 (,] 1 ) ↔ ( ( 𝑋 · 𝑌 ) ∈ ℝ ∧ 0 < ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ≤ 1 ) ) |
| 137 |
123 126 134 136
|
syl3anbrc |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝑋 · 𝑌 ) ∈ ( 0 (,] 1 ) ) |
| 138 |
1
|
xrge0iifcv |
⊢ ( ( 𝑋 · 𝑌 ) ∈ ( 0 (,] 1 ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = - ( log ‘ ( 𝑋 · 𝑌 ) ) ) |
| 139 |
137 138
|
syl |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = - ( log ‘ ( 𝑋 · 𝑌 ) ) ) |
| 140 |
110 114
|
relogmuld |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ ( 𝑋 · 𝑌 ) ) = ( ( log ‘ 𝑋 ) + ( log ‘ 𝑌 ) ) ) |
| 141 |
140
|
negeqd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → - ( log ‘ ( 𝑋 · 𝑌 ) ) = - ( ( log ‘ 𝑋 ) + ( log ‘ 𝑌 ) ) ) |
| 142 |
111
|
recnd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 143 |
115
|
recnd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( log ‘ 𝑌 ) ∈ ℂ ) |
| 144 |
142 143
|
negdid |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → - ( ( log ‘ 𝑋 ) + ( log ‘ 𝑌 ) ) = ( - ( log ‘ 𝑋 ) + - ( log ‘ 𝑌 ) ) ) |
| 145 |
139 141 144
|
3eqtrd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( - ( log ‘ 𝑋 ) + - ( log ‘ 𝑌 ) ) ) |
| 146 |
118 120 145
|
3eqtr4rd |
⊢ ( ( 𝑋 ∈ ( 0 (,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
| 147 |
108 146
|
jaoian |
⊢ ( ( ( 𝑋 = 0 ∨ 𝑋 ∈ ( 0 (,] 1 ) ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
| 148 |
72 147
|
sylan |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 ∈ ( 0 (,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
| 149 |
66 148
|
jaodan |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ( 𝑌 = 0 ∨ 𝑌 ∈ ( 0 (,] 1 ) ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |
| 150 |
13 149
|
sylan2 |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑋 · 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) +𝑒 ( 𝐹 ‘ 𝑌 ) ) ) |