| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0iifhmeo.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 = 0 , +∞ , - ( log ‘ 𝑥 ) ) ) |
| 2 |
|
xrge0iifhmeo.k |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 3 |
|
xrge0pluscn.1 |
⊢ + = ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) |
| 4 |
1 2
|
xrge0iifhmeo |
⊢ 𝐹 ∈ ( II Homeo 𝐽 ) |
| 5 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 6 |
|
xpss12 |
⊢ ( ( ( 0 [,] 1 ) ⊆ ℂ ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℂ × ℂ ) ) |
| 7 |
5 5 6
|
mp2an |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℂ × ℂ ) |
| 8 |
|
ax-mulf |
⊢ · : ( ℂ × ℂ ) ⟶ ℂ |
| 9 |
|
ffn |
⊢ ( · : ( ℂ × ℂ ) ⟶ ℂ → · Fn ( ℂ × ℂ ) ) |
| 10 |
|
fnssresb |
⊢ ( · Fn ( ℂ × ℂ ) → ( ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ↔ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℂ × ℂ ) ) ) |
| 11 |
8 9 10
|
mp2b |
⊢ ( ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ↔ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℂ × ℂ ) ) |
| 12 |
7 11
|
mpbir |
⊢ ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) |
| 13 |
|
ovres |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑢 ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) 𝑣 ) = ( 𝑢 · 𝑣 ) ) |
| 14 |
|
iimulcl |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑢 · 𝑣 ) ∈ ( 0 [,] 1 ) ) |
| 15 |
13 14
|
eqeltrd |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑢 ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) 𝑣 ) ∈ ( 0 [,] 1 ) ) |
| 16 |
15
|
rgen2 |
⊢ ∀ 𝑢 ∈ ( 0 [,] 1 ) ∀ 𝑣 ∈ ( 0 [,] 1 ) ( 𝑢 ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) 𝑣 ) ∈ ( 0 [,] 1 ) |
| 17 |
|
ffnov |
⊢ ( ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ( 0 [,] 1 ) ↔ ( ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ∧ ∀ 𝑢 ∈ ( 0 [,] 1 ) ∀ 𝑣 ∈ ( 0 [,] 1 ) ( 𝑢 ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) 𝑣 ) ∈ ( 0 [,] 1 ) ) ) |
| 18 |
12 16 17
|
mpbir2an |
⊢ ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ( 0 [,] 1 ) |
| 19 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 20 |
|
xpss12 |
⊢ ( ( ( 0 [,] +∞ ) ⊆ ℝ* ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ⊆ ( ℝ* × ℝ* ) ) |
| 21 |
19 19 20
|
mp2an |
⊢ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ⊆ ( ℝ* × ℝ* ) |
| 22 |
|
xaddf |
⊢ +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* |
| 23 |
|
ffn |
⊢ ( +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* → +𝑒 Fn ( ℝ* × ℝ* ) ) |
| 24 |
|
fnssresb |
⊢ ( +𝑒 Fn ( ℝ* × ℝ* ) → ( ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) Fn ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ↔ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ⊆ ( ℝ* × ℝ* ) ) ) |
| 25 |
22 23 24
|
mp2b |
⊢ ( ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) Fn ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ↔ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ⊆ ( ℝ* × ℝ* ) ) |
| 26 |
21 25
|
mpbir |
⊢ ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) Fn ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) |
| 27 |
3
|
fneq1i |
⊢ ( + Fn ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ↔ ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) Fn ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) |
| 28 |
26 27
|
mpbir |
⊢ + Fn ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) |
| 29 |
3
|
oveqi |
⊢ ( 𝑎 + 𝑏 ) = ( 𝑎 ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) 𝑏 ) |
| 30 |
|
ovres |
⊢ ( ( 𝑎 ∈ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ( 0 [,] +∞ ) ) → ( 𝑎 ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) 𝑏 ) = ( 𝑎 +𝑒 𝑏 ) ) |
| 31 |
|
ge0xaddcl |
⊢ ( ( 𝑎 ∈ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ( 0 [,] +∞ ) ) → ( 𝑎 +𝑒 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
| 32 |
30 31
|
eqeltrd |
⊢ ( ( 𝑎 ∈ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ( 0 [,] +∞ ) ) → ( 𝑎 ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
| 33 |
29 32
|
eqeltrid |
⊢ ( ( 𝑎 ∈ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ( 0 [,] +∞ ) ) → ( 𝑎 + 𝑏 ) ∈ ( 0 [,] +∞ ) ) |
| 34 |
33
|
rgen2 |
⊢ ∀ 𝑎 ∈ ( 0 [,] +∞ ) ∀ 𝑏 ∈ ( 0 [,] +∞ ) ( 𝑎 + 𝑏 ) ∈ ( 0 [,] +∞ ) |
| 35 |
|
ffnov |
⊢ ( + : ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ⟶ ( 0 [,] +∞ ) ↔ ( + Fn ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ∧ ∀ 𝑎 ∈ ( 0 [,] +∞ ) ∀ 𝑏 ∈ ( 0 [,] +∞ ) ( 𝑎 + 𝑏 ) ∈ ( 0 [,] +∞ ) ) ) |
| 36 |
28 34 35
|
mpbir2an |
⊢ + : ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ⟶ ( 0 [,] +∞ ) |
| 37 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 38 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
| 39 |
|
resttopon |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) |
| 40 |
38 19 39
|
mp2an |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
| 41 |
2 40
|
eqeltri |
⊢ 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
| 42 |
3
|
oveqi |
⊢ ( ( 𝐹 ‘ 𝑢 ) + ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ( 𝐹 ‘ 𝑣 ) ) |
| 43 |
1
|
xrge0iifcnv |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,] +∞ ) ↦ if ( 𝑦 = +∞ , 0 , ( exp ‘ - 𝑦 ) ) ) ) |
| 44 |
43
|
simpli |
⊢ 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) |
| 45 |
|
f1of |
⊢ ( 𝐹 : ( 0 [,] 1 ) –1-1-onto→ ( 0 [,] +∞ ) → 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) ) |
| 46 |
44 45
|
ax-mp |
⊢ 𝐹 : ( 0 [,] 1 ) ⟶ ( 0 [,] +∞ ) |
| 47 |
46
|
ffvelcdmi |
⊢ ( 𝑢 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑢 ) ∈ ( 0 [,] +∞ ) ) |
| 48 |
46
|
ffvelcdmi |
⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → ( 𝐹 ‘ 𝑣 ) ∈ ( 0 [,] +∞ ) ) |
| 49 |
|
ovres |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ 𝑣 ) ∈ ( 0 [,] +∞ ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) +𝑒 ( 𝐹 ‘ 𝑣 ) ) ) |
| 50 |
47 48 49
|
syl2an |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ 𝑢 ) ( +𝑒 ↾ ( ( 0 [,] +∞ ) × ( 0 [,] +∞ ) ) ) ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) +𝑒 ( 𝐹 ‘ 𝑣 ) ) ) |
| 51 |
42 50
|
eqtrid |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ 𝑢 ) + ( 𝐹 ‘ 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) +𝑒 ( 𝐹 ‘ 𝑣 ) ) ) |
| 52 |
1 2
|
xrge0iifhom |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑢 · 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) +𝑒 ( 𝐹 ‘ 𝑣 ) ) ) |
| 53 |
13
|
eqcomd |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑢 · 𝑣 ) = ( 𝑢 ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) 𝑣 ) ) |
| 54 |
53
|
fveq2d |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑢 · 𝑣 ) ) = ( 𝐹 ‘ ( 𝑢 ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) 𝑣 ) ) ) |
| 55 |
51 52 54
|
3eqtr2rd |
⊢ ( ( 𝑢 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑢 ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) 𝑣 ) ) = ( ( 𝐹 ‘ 𝑢 ) + ( 𝐹 ‘ 𝑣 ) ) ) |
| 56 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) |
| 57 |
56
|
iistmd |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ∈ TopMnd |
| 58 |
|
cnfldex |
⊢ ℂfld ∈ V |
| 59 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
| 60 |
|
eqid |
⊢ ( ℂfld ↾s ( 0 [,] 1 ) ) = ( ℂfld ↾s ( 0 [,] 1 ) ) |
| 61 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 62 |
60 61
|
mgpress |
⊢ ( ( ℂfld ∈ V ∧ ( 0 [,] 1 ) ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) ) |
| 63 |
58 59 62
|
mp2an |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) |
| 64 |
60
|
dfii4 |
⊢ II = ( TopOpen ‘ ( ℂfld ↾s ( 0 [,] 1 ) ) ) |
| 65 |
63 64
|
mgptopn |
⊢ II = ( TopOpen ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) |
| 66 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 67 |
61 66
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 68 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 69 |
61 68
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 70 |
8 9
|
ax-mp |
⊢ · Fn ( ℂ × ℂ ) |
| 71 |
67 56 69 70 5
|
ressplusf |
⊢ ( +𝑓 ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) = ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 72 |
71
|
eqcomi |
⊢ ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( +𝑓 ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ) |
| 73 |
65 72
|
tmdcn |
⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,] 1 ) ) ∈ TopMnd → ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( ( II ×t II ) Cn II ) ) |
| 74 |
57 73
|
ax-mp |
⊢ ( · ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( ( II ×t II ) Cn II ) |
| 75 |
4 18 36 37 41 55 74
|
mndpluscn |
⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |