Metamath Proof Explorer


Theorem esumle

Description: If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017)

Ref Expression
Hypotheses esumadd.0 φ A V
esumadd.1 φ k A B 0 +∞
esumadd.2 φ k A C 0 +∞
esumle.3 φ k A B C
Assertion esumle φ * k A B * k A C

Proof

Step Hyp Ref Expression
1 esumadd.0 φ A V
2 esumadd.1 φ k A B 0 +∞
3 esumadd.2 φ k A C 0 +∞
4 esumle.3 φ k A B C
5 iccssxr 0 +∞ *
6 2 ralrimiva φ k A B 0 +∞
7 nfcv _ k A
8 7 esumcl A V k A B 0 +∞ * k A B 0 +∞
9 1 6 8 syl2anc φ * k A B 0 +∞
10 5 9 sseldi φ * k A B *
11 5 3 sseldi φ k A C *
12 5 2 sseldi φ k A B *
13 12 xnegcld φ k A B *
14 11 13 xaddcld φ k A C + 𝑒 B *
15 xsubge0 C * B * 0 C + 𝑒 B B C
16 11 12 15 syl2anc φ k A 0 C + 𝑒 B B C
17 4 16 mpbird φ k A 0 C + 𝑒 B
18 pnfge C + 𝑒 B * C + 𝑒 B +∞
19 14 18 syl φ k A C + 𝑒 B +∞
20 0xr 0 *
21 pnfxr +∞ *
22 elicc1 0 * +∞ * C + 𝑒 B 0 +∞ C + 𝑒 B * 0 C + 𝑒 B C + 𝑒 B +∞
23 20 21 22 mp2an C + 𝑒 B 0 +∞ C + 𝑒 B * 0 C + 𝑒 B C + 𝑒 B +∞
24 14 17 19 23 syl3anbrc φ k A C + 𝑒 B 0 +∞
25 24 ralrimiva φ k A C + 𝑒 B 0 +∞
26 7 esumcl A V k A C + 𝑒 B 0 +∞ * k A C + 𝑒 B 0 +∞
27 1 25 26 syl2anc φ * k A C + 𝑒 B 0 +∞
28 5 27 sseldi φ * k A C + 𝑒 B *
29 20 a1i φ 0 *
30 21 a1i φ +∞ *
31 elicc4 0 * +∞ * * k A C + 𝑒 B * * k A C + 𝑒 B 0 +∞ 0 * k A C + 𝑒 B * k A C + 𝑒 B +∞
32 29 30 28 31 syl3anc φ * k A C + 𝑒 B 0 +∞ 0 * k A C + 𝑒 B * k A C + 𝑒 B +∞
33 27 32 mpbid φ 0 * k A C + 𝑒 B * k A C + 𝑒 B +∞
34 33 simpld φ 0 * k A C + 𝑒 B
35 xraddge02 * k A B * * k A C + 𝑒 B * 0 * k A C + 𝑒 B * k A B * k A B + 𝑒 * k A C + 𝑒 B
36 35 imp * k A B * * k A C + 𝑒 B * 0 * k A C + 𝑒 B * k A B * k A B + 𝑒 * k A C + 𝑒 B
37 10 28 34 36 syl21anc φ * k A B * k A B + 𝑒 * k A C + 𝑒 B
38 xaddcom * k A B * * k A C + 𝑒 B * * k A B + 𝑒 * k A C + 𝑒 B = * k A C + 𝑒 B + 𝑒 * k A B
39 10 28 38 syl2anc φ * k A B + 𝑒 * k A C + 𝑒 B = * k A C + 𝑒 B + 𝑒 * k A B
40 37 39 breqtrd φ * k A B * k A C + 𝑒 B + 𝑒 * k A B
41 1 24 2 esumadd φ * k A C + 𝑒 B + 𝑒 B = * k A C + 𝑒 B + 𝑒 * k A B
42 xrge0npcan C 0 +∞ B 0 +∞ B C C + 𝑒 B + 𝑒 B = C
43 3 2 4 42 syl3anc φ k A C + 𝑒 B + 𝑒 B = C
44 43 esumeq2dv φ * k A C + 𝑒 B + 𝑒 B = * k A C
45 41 44 eqtr3d φ * k A C + 𝑒 B + 𝑒 * k A B = * k A C
46 40 45 breqtrd φ * k A B * k A C