| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumadd.0 |
|
| 2 |
|
esumadd.1 |
|
| 3 |
|
esumadd.2 |
|
| 4 |
|
esumle.3 |
|
| 5 |
|
iccssxr |
|
| 6 |
2
|
ralrimiva |
|
| 7 |
|
nfcv |
|
| 8 |
7
|
esumcl |
|
| 9 |
1 6 8
|
syl2anc |
|
| 10 |
5 9
|
sselid |
|
| 11 |
5 3
|
sselid |
|
| 12 |
5 2
|
sselid |
|
| 13 |
12
|
xnegcld |
|
| 14 |
11 13
|
xaddcld |
|
| 15 |
|
xsubge0 |
|
| 16 |
11 12 15
|
syl2anc |
|
| 17 |
4 16
|
mpbird |
|
| 18 |
|
pnfge |
|
| 19 |
14 18
|
syl |
|
| 20 |
|
0xr |
|
| 21 |
|
pnfxr |
|
| 22 |
|
elicc1 |
|
| 23 |
20 21 22
|
mp2an |
|
| 24 |
14 17 19 23
|
syl3anbrc |
|
| 25 |
24
|
ralrimiva |
|
| 26 |
7
|
esumcl |
|
| 27 |
1 25 26
|
syl2anc |
|
| 28 |
5 27
|
sselid |
|
| 29 |
20
|
a1i |
|
| 30 |
21
|
a1i |
|
| 31 |
|
elicc4 |
|
| 32 |
29 30 28 31
|
syl3anc |
|
| 33 |
27 32
|
mpbid |
|
| 34 |
33
|
simpld |
|
| 35 |
|
xraddge02 |
|
| 36 |
35
|
imp |
|
| 37 |
10 28 34 36
|
syl21anc |
|
| 38 |
|
xaddcom |
|
| 39 |
10 28 38
|
syl2anc |
|
| 40 |
37 39
|
breqtrd |
|
| 41 |
1 24 2
|
esumadd |
|
| 42 |
|
xrge0npcan |
|
| 43 |
3 2 4 42
|
syl3anc |
|
| 44 |
43
|
esumeq2dv |
|
| 45 |
41 44
|
eqtr3d |
|
| 46 |
40 45
|
breqtrd |
|