Metamath Proof Explorer


Theorem gsumesum

Description: Relate a group sum on ` ( RR*s |``s ( 0 , +oo ) ) ` to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017) (Proof shortened by AV, 12-Dec-2019)

Ref Expression
Hypotheses gsumesum.0 k φ
gsumesum.1 φ A Fin
gsumesum.2 φ k A B 0 +∞
Assertion gsumesum φ 𝑠 * 𝑠 0 +∞ k A B = * k A B

Proof

Step Hyp Ref Expression
1 gsumesum.0 k φ
2 gsumesum.1 φ A Fin
3 gsumesum.2 φ k A B 0 +∞
4 nfcv _ k A
5 eqidd φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B = 𝑠 * 𝑠 0 +∞ k x B
6 1 4 2 3 5 esumval φ * k A B = sup ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B * <
7 xrltso < Or *
8 7 a1i φ < Or *
9 iccssxr 0 +∞ *
10 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
11 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
12 11 a1i φ 𝑠 * 𝑠 0 +∞ CMnd
13 3 ex φ k A B 0 +∞
14 1 13 ralrimi φ k A B 0 +∞
15 10 12 2 14 gsummptcl φ 𝑠 * 𝑠 0 +∞ k A B 0 +∞
16 9 15 sselid φ 𝑠 * 𝑠 0 +∞ k A B *
17 pwidg A Fin A 𝒫 A
18 2 17 syl φ A 𝒫 A
19 18 2 elind φ A 𝒫 A Fin
20 eqidd φ 𝑠 * 𝑠 0 +∞ k A B = 𝑠 * 𝑠 0 +∞ k A B
21 mpteq1 x = A k x B = k A B
22 21 oveq2d x = A 𝑠 * 𝑠 0 +∞ k x B = 𝑠 * 𝑠 0 +∞ k A B
23 22 rspceeqv A 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k A B = 𝑠 * 𝑠 0 +∞ k A B x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k A B = 𝑠 * 𝑠 0 +∞ k x B
24 19 20 23 syl2anc φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k A B = 𝑠 * 𝑠 0 +∞ k x B
25 eqid x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B = x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B
26 ovex 𝑠 * 𝑠 0 +∞ k x B V
27 25 26 elrnmpti 𝑠 * 𝑠 0 +∞ k A B ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k A B = 𝑠 * 𝑠 0 +∞ k x B
28 24 27 sylibr φ 𝑠 * 𝑠 0 +∞ k A B ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B
29 simpr φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B
30 mpteq1 x = a k x B = k a B
31 30 oveq2d x = a 𝑠 * 𝑠 0 +∞ k x B = 𝑠 * 𝑠 0 +∞ k a B
32 31 cbvmptv x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B = a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B
33 ovex 𝑠 * 𝑠 0 +∞ k a B V
34 32 33 elrnmpti y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin y = 𝑠 * 𝑠 0 +∞ k a B
35 29 34 sylib φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin y = 𝑠 * 𝑠 0 +∞ k a B
36 11 a1i φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ CMnd
37 inss2 𝒫 A Fin Fin
38 simpr φ a 𝒫 A Fin a 𝒫 A Fin
39 37 38 sselid φ a 𝒫 A Fin a Fin
40 nfv k a 𝒫 A Fin
41 1 40 nfan k φ a 𝒫 A Fin
42 simpll φ a 𝒫 A Fin k a φ
43 inss1 𝒫 A Fin 𝒫 A
44 43 sseli a 𝒫 A Fin a 𝒫 A
45 44 elpwid a 𝒫 A Fin a A
46 45 ad2antlr φ a 𝒫 A Fin k a a A
47 simpr φ a 𝒫 A Fin k a k a
48 46 47 sseldd φ a 𝒫 A Fin k a k A
49 42 48 3 syl2anc φ a 𝒫 A Fin k a B 0 +∞
50 49 ex φ a 𝒫 A Fin k a B 0 +∞
51 41 50 ralrimi φ a 𝒫 A Fin k a B 0 +∞
52 10 36 39 51 gsummptcl φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B 0 +∞
53 9 52 sselid φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B *
54 diffi A Fin A a Fin
55 2 54 syl φ A a Fin
56 55 adantr φ a 𝒫 A Fin A a Fin
57 simpll φ a 𝒫 A Fin k A a φ
58 simpr φ a 𝒫 A Fin k A a k A a
59 58 eldifad φ a 𝒫 A Fin k A a k A
60 57 59 3 syl2anc φ a 𝒫 A Fin k A a B 0 +∞
61 60 ex φ a 𝒫 A Fin k A a B 0 +∞
62 41 61 ralrimi φ a 𝒫 A Fin k A a B 0 +∞
63 10 36 56 62 gsummptcl φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k A a B 0 +∞
64 9 63 sselid φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k A a B *
65 elxrge0 𝑠 * 𝑠 0 +∞ k A a B 0 +∞ 𝑠 * 𝑠 0 +∞ k A a B * 0 𝑠 * 𝑠 0 +∞ k A a B
66 65 simprbi 𝑠 * 𝑠 0 +∞ k A a B 0 +∞ 0 𝑠 * 𝑠 0 +∞ k A a B
67 63 66 syl φ a 𝒫 A Fin 0 𝑠 * 𝑠 0 +∞ k A a B
68 xraddge02 𝑠 * 𝑠 0 +∞ k a B * 𝑠 * 𝑠 0 +∞ k A a B * 0 𝑠 * 𝑠 0 +∞ k A a B 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k a B + 𝑒 𝑠 * 𝑠 0 +∞ k A a B
69 68 imp 𝑠 * 𝑠 0 +∞ k a B * 𝑠 * 𝑠 0 +∞ k A a B * 0 𝑠 * 𝑠 0 +∞ k A a B 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k a B + 𝑒 𝑠 * 𝑠 0 +∞ k A a B
70 53 64 67 69 syl21anc φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k a B + 𝑒 𝑠 * 𝑠 0 +∞ k A a B
71 70 adantlr φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k a B + 𝑒 𝑠 * 𝑠 0 +∞ k A a B
72 simpll φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin φ
73 45 adantl φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin a A
74 xrge00 0 = 0 𝑠 * 𝑠 0 +∞
75 xrge0plusg + 𝑒 = + 𝑠 * 𝑠 0 +∞
76 11 a1i φ a A 𝑠 * 𝑠 0 +∞ CMnd
77 2 adantr φ a A A Fin
78 eqid k A B = k A B
79 1 3 78 fmptdf φ k A B : A 0 +∞
80 79 adantr φ a A k A B : A 0 +∞
81 78 fnmpt k A B 0 +∞ k A B Fn A
82 14 81 syl φ k A B Fn A
83 c0ex 0 V
84 83 a1i φ 0 V
85 82 2 84 fndmfifsupp φ finSupp 0 k A B
86 85 adantr φ a A finSupp 0 k A B
87 disjdif a A a =
88 87 a1i φ a A a A a =
89 undif a A a A a = A
90 89 biimpi a A a A a = A
91 90 eqcomd a A A = a A a
92 91 adantl φ a A A = a A a
93 10 74 75 76 77 80 86 88 92 gsumsplit φ a A 𝑠 * 𝑠 0 +∞ k A B = 𝑠 * 𝑠 0 +∞ k A B a + 𝑒 𝑠 * 𝑠 0 +∞ k A B A a
94 resmpt a A k A B a = k a B
95 94 oveq2d a A 𝑠 * 𝑠 0 +∞ k A B a = 𝑠 * 𝑠 0 +∞ k a B
96 95 adantl φ a A 𝑠 * 𝑠 0 +∞ k A B a = 𝑠 * 𝑠 0 +∞ k a B
97 difss A a A
98 resmpt A a A k A B A a = k A a B
99 97 98 ax-mp k A B A a = k A a B
100 99 oveq2i 𝑠 * 𝑠 0 +∞ k A B A a = 𝑠 * 𝑠 0 +∞ k A a B
101 100 a1i φ a A 𝑠 * 𝑠 0 +∞ k A B A a = 𝑠 * 𝑠 0 +∞ k A a B
102 96 101 oveq12d φ a A 𝑠 * 𝑠 0 +∞ k A B a + 𝑒 𝑠 * 𝑠 0 +∞ k A B A a = 𝑠 * 𝑠 0 +∞ k a B + 𝑒 𝑠 * 𝑠 0 +∞ k A a B
103 93 102 eqtrd φ a A 𝑠 * 𝑠 0 +∞ k A B = 𝑠 * 𝑠 0 +∞ k a B + 𝑒 𝑠 * 𝑠 0 +∞ k A a B
104 72 73 103 syl2anc φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k A B = 𝑠 * 𝑠 0 +∞ k a B + 𝑒 𝑠 * 𝑠 0 +∞ k A a B
105 71 104 breqtrrd φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k A B
106 105 ralrimiva φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k A B
107 r19.29r a 𝒫 A Fin y = 𝑠 * 𝑠 0 +∞ k a B a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k A B a 𝒫 A Fin y = 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k A B
108 breq1 y = 𝑠 * 𝑠 0 +∞ k a B y 𝑠 * 𝑠 0 +∞ k A B 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k A B
109 108 biimpar y = 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k A B y 𝑠 * 𝑠 0 +∞ k A B
110 109 rexlimivw a 𝒫 A Fin y = 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k A B y 𝑠 * 𝑠 0 +∞ k A B
111 107 110 syl a 𝒫 A Fin y = 𝑠 * 𝑠 0 +∞ k a B a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B 𝑠 * 𝑠 0 +∞ k A B y 𝑠 * 𝑠 0 +∞ k A B
112 35 106 111 syl2anc φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B y 𝑠 * 𝑠 0 +∞ k A B
113 16 adantr φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B 𝑠 * 𝑠 0 +∞ k A B *
114 11 a1i φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ CMnd
115 simpr φ x 𝒫 A Fin x 𝒫 A Fin
116 37 115 sselid φ x 𝒫 A Fin x Fin
117 nfv k x 𝒫 A Fin
118 1 117 nfan k φ x 𝒫 A Fin
119 simpll φ x 𝒫 A Fin k x φ
120 43 sseli x 𝒫 A Fin x 𝒫 A
121 120 ad2antlr φ x 𝒫 A Fin k x x 𝒫 A
122 121 elpwid φ x 𝒫 A Fin k x x A
123 simpr φ x 𝒫 A Fin k x k x
124 122 123 sseldd φ x 𝒫 A Fin k x k A
125 119 124 3 syl2anc φ x 𝒫 A Fin k x B 0 +∞
126 125 ex φ x 𝒫 A Fin k x B 0 +∞
127 118 126 ralrimi φ x 𝒫 A Fin k x B 0 +∞
128 10 114 116 127 gsummptcl φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B 0 +∞
129 9 128 sselid φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B *
130 129 ralrimiva φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B *
131 25 rnmptss x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B * ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B *
132 130 131 syl φ ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B *
133 132 sselda φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B y *
134 xrltnle 𝑠 * 𝑠 0 +∞ k A B * y * 𝑠 * 𝑠 0 +∞ k A B < y ¬ y 𝑠 * 𝑠 0 +∞ k A B
135 134 con2bid 𝑠 * 𝑠 0 +∞ k A B * y * y 𝑠 * 𝑠 0 +∞ k A B ¬ 𝑠 * 𝑠 0 +∞ k A B < y
136 113 133 135 syl2anc φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B y 𝑠 * 𝑠 0 +∞ k A B ¬ 𝑠 * 𝑠 0 +∞ k A B < y
137 112 136 mpbid φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B ¬ 𝑠 * 𝑠 0 +∞ k A B < y
138 8 16 28 137 supmax φ sup ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B * < = 𝑠 * 𝑠 0 +∞ k A B
139 6 138 eqtr2d φ 𝑠 * 𝑠 0 +∞ k A B = * k A B