| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumesum.0 |
|- F/ k ph |
| 2 |
|
gsumesum.1 |
|- ( ph -> A e. Fin ) |
| 3 |
|
gsumesum.2 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 4 |
|
nfcv |
|- F/_ k A |
| 5 |
|
eqidd |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) |
| 6 |
1 4 2 3 5
|
esumval |
|- ( ph -> sum* k e. A B = sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) , RR* , < ) ) |
| 7 |
|
xrltso |
|- < Or RR* |
| 8 |
7
|
a1i |
|- ( ph -> < Or RR* ) |
| 9 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 10 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 11 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| 12 |
11
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 13 |
3
|
ex |
|- ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) ) |
| 14 |
1 13
|
ralrimi |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
| 15 |
10 12 2 14
|
gsummptcl |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. ( 0 [,] +oo ) ) |
| 16 |
9 15
|
sselid |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. RR* ) |
| 17 |
|
pwidg |
|- ( A e. Fin -> A e. ~P A ) |
| 18 |
2 17
|
syl |
|- ( ph -> A e. ~P A ) |
| 19 |
18 2
|
elind |
|- ( ph -> A e. ( ~P A i^i Fin ) ) |
| 20 |
|
eqidd |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
| 21 |
|
mpteq1 |
|- ( x = A -> ( k e. x |-> B ) = ( k e. A |-> B ) ) |
| 22 |
21
|
oveq2d |
|- ( x = A -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
| 23 |
22
|
rspceeqv |
|- ( ( A e. ( ~P A i^i Fin ) /\ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) -> E. x e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) |
| 24 |
19 20 23
|
syl2anc |
|- ( ph -> E. x e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) |
| 25 |
|
eqid |
|- ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) = ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) |
| 26 |
|
ovex |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) e. _V |
| 27 |
25 26
|
elrnmpti |
|- ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) <-> E. x e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) |
| 28 |
24 27
|
sylibr |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) |
| 29 |
|
simpr |
|- ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) -> y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) |
| 30 |
|
mpteq1 |
|- ( x = a -> ( k e. x |-> B ) = ( k e. a |-> B ) ) |
| 31 |
30
|
oveq2d |
|- ( x = a -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
| 32 |
31
|
cbvmptv |
|- ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) = ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
| 33 |
|
ovex |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) e. _V |
| 34 |
32 33
|
elrnmpti |
|- ( y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) <-> E. a e. ( ~P A i^i Fin ) y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
| 35 |
29 34
|
sylib |
|- ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) -> E. a e. ( ~P A i^i Fin ) y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
| 36 |
11
|
a1i |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 37 |
|
inss2 |
|- ( ~P A i^i Fin ) C_ Fin |
| 38 |
|
simpr |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> a e. ( ~P A i^i Fin ) ) |
| 39 |
37 38
|
sselid |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> a e. Fin ) |
| 40 |
|
nfv |
|- F/ k a e. ( ~P A i^i Fin ) |
| 41 |
1 40
|
nfan |
|- F/ k ( ph /\ a e. ( ~P A i^i Fin ) ) |
| 42 |
|
simpll |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> ph ) |
| 43 |
|
inss1 |
|- ( ~P A i^i Fin ) C_ ~P A |
| 44 |
43
|
sseli |
|- ( a e. ( ~P A i^i Fin ) -> a e. ~P A ) |
| 45 |
44
|
elpwid |
|- ( a e. ( ~P A i^i Fin ) -> a C_ A ) |
| 46 |
45
|
ad2antlr |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> a C_ A ) |
| 47 |
|
simpr |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> k e. a ) |
| 48 |
46 47
|
sseldd |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> k e. A ) |
| 49 |
42 48 3
|
syl2anc |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> B e. ( 0 [,] +oo ) ) |
| 50 |
49
|
ex |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( k e. a -> B e. ( 0 [,] +oo ) ) ) |
| 51 |
41 50
|
ralrimi |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> A. k e. a B e. ( 0 [,] +oo ) ) |
| 52 |
10 36 39 51
|
gsummptcl |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) e. ( 0 [,] +oo ) ) |
| 53 |
9 52
|
sselid |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) e. RR* ) |
| 54 |
|
diffi |
|- ( A e. Fin -> ( A \ a ) e. Fin ) |
| 55 |
2 54
|
syl |
|- ( ph -> ( A \ a ) e. Fin ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( A \ a ) e. Fin ) |
| 57 |
|
simpll |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. ( A \ a ) ) -> ph ) |
| 58 |
|
simpr |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. ( A \ a ) ) -> k e. ( A \ a ) ) |
| 59 |
58
|
eldifad |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. ( A \ a ) ) -> k e. A ) |
| 60 |
57 59 3
|
syl2anc |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. ( A \ a ) ) -> B e. ( 0 [,] +oo ) ) |
| 61 |
60
|
ex |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( k e. ( A \ a ) -> B e. ( 0 [,] +oo ) ) ) |
| 62 |
41 61
|
ralrimi |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> A. k e. ( A \ a ) B e. ( 0 [,] +oo ) ) |
| 63 |
10 36 56 62
|
gsummptcl |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) e. ( 0 [,] +oo ) ) |
| 64 |
9 63
|
sselid |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) e. RR* ) |
| 65 |
|
elxrge0 |
|- ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) e. ( 0 [,] +oo ) <-> ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) e. RR* /\ 0 <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) ) |
| 66 |
65
|
simprbi |
|- ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) e. ( 0 [,] +oo ) -> 0 <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) |
| 67 |
63 66
|
syl |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> 0 <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) |
| 68 |
|
xraddge02 |
|- ( ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) e. RR* /\ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) e. RR* ) -> ( 0 <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) +e ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) ) ) |
| 69 |
68
|
imp |
|- ( ( ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) e. RR* /\ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) e. RR* ) /\ 0 <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) +e ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) ) |
| 70 |
53 64 67 69
|
syl21anc |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) +e ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) ) |
| 71 |
70
|
adantlr |
|- ( ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) +e ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) ) |
| 72 |
|
simpll |
|- ( ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) -> ph ) |
| 73 |
45
|
adantl |
|- ( ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) -> a C_ A ) |
| 74 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 75 |
|
xrge0plusg |
|- +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 76 |
11
|
a1i |
|- ( ( ph /\ a C_ A ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 77 |
2
|
adantr |
|- ( ( ph /\ a C_ A ) -> A e. Fin ) |
| 78 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
| 79 |
1 3 78
|
fmptdf |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
| 80 |
79
|
adantr |
|- ( ( ph /\ a C_ A ) -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
| 81 |
78
|
fnmpt |
|- ( A. k e. A B e. ( 0 [,] +oo ) -> ( k e. A |-> B ) Fn A ) |
| 82 |
14 81
|
syl |
|- ( ph -> ( k e. A |-> B ) Fn A ) |
| 83 |
|
c0ex |
|- 0 e. _V |
| 84 |
83
|
a1i |
|- ( ph -> 0 e. _V ) |
| 85 |
82 2 84
|
fndmfifsupp |
|- ( ph -> ( k e. A |-> B ) finSupp 0 ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ a C_ A ) -> ( k e. A |-> B ) finSupp 0 ) |
| 87 |
|
disjdif |
|- ( a i^i ( A \ a ) ) = (/) |
| 88 |
87
|
a1i |
|- ( ( ph /\ a C_ A ) -> ( a i^i ( A \ a ) ) = (/) ) |
| 89 |
|
undif |
|- ( a C_ A <-> ( a u. ( A \ a ) ) = A ) |
| 90 |
89
|
biimpi |
|- ( a C_ A -> ( a u. ( A \ a ) ) = A ) |
| 91 |
90
|
eqcomd |
|- ( a C_ A -> A = ( a u. ( A \ a ) ) ) |
| 92 |
91
|
adantl |
|- ( ( ph /\ a C_ A ) -> A = ( a u. ( A \ a ) ) ) |
| 93 |
10 74 75 76 77 80 86 88 92
|
gsumsplit |
|- ( ( ph /\ a C_ A ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` a ) ) +e ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` ( A \ a ) ) ) ) ) |
| 94 |
|
resmpt |
|- ( a C_ A -> ( ( k e. A |-> B ) |` a ) = ( k e. a |-> B ) ) |
| 95 |
94
|
oveq2d |
|- ( a C_ A -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` a ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
| 96 |
95
|
adantl |
|- ( ( ph /\ a C_ A ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` a ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
| 97 |
|
difss |
|- ( A \ a ) C_ A |
| 98 |
|
resmpt |
|- ( ( A \ a ) C_ A -> ( ( k e. A |-> B ) |` ( A \ a ) ) = ( k e. ( A \ a ) |-> B ) ) |
| 99 |
97 98
|
ax-mp |
|- ( ( k e. A |-> B ) |` ( A \ a ) ) = ( k e. ( A \ a ) |-> B ) |
| 100 |
99
|
oveq2i |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` ( A \ a ) ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) |
| 101 |
100
|
a1i |
|- ( ( ph /\ a C_ A ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` ( A \ a ) ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) |
| 102 |
96 101
|
oveq12d |
|- ( ( ph /\ a C_ A ) -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` a ) ) +e ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. A |-> B ) |` ( A \ a ) ) ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) +e ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) ) |
| 103 |
93 102
|
eqtrd |
|- ( ( ph /\ a C_ A ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) +e ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) ) |
| 104 |
72 73 103
|
syl2anc |
|- ( ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) = ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) +e ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( A \ a ) |-> B ) ) ) ) |
| 105 |
71 104
|
breqtrrd |
|- ( ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
| 106 |
105
|
ralrimiva |
|- ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) -> A. a e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
| 107 |
|
r19.29r |
|- ( ( E. a e. ( ~P A i^i Fin ) y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) /\ A. a e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) -> E. a e. ( ~P A i^i Fin ) ( y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) /\ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) ) |
| 108 |
|
breq1 |
|- ( y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) -> ( y <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) <-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) ) |
| 109 |
108
|
biimpar |
|- ( ( y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) /\ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) -> y <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
| 110 |
109
|
rexlimivw |
|- ( E. a e. ( ~P A i^i Fin ) ( y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) /\ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) -> y <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
| 111 |
107 110
|
syl |
|- ( ( E. a e. ( ~P A i^i Fin ) y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) /\ A. a e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) -> y <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
| 112 |
35 106 111
|
syl2anc |
|- ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) -> y <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
| 113 |
16
|
adantr |
|- ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. RR* ) |
| 114 |
11
|
a1i |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 115 |
|
simpr |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. ( ~P A i^i Fin ) ) |
| 116 |
37 115
|
sselid |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. Fin ) |
| 117 |
|
nfv |
|- F/ k x e. ( ~P A i^i Fin ) |
| 118 |
1 117
|
nfan |
|- F/ k ( ph /\ x e. ( ~P A i^i Fin ) ) |
| 119 |
|
simpll |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> ph ) |
| 120 |
43
|
sseli |
|- ( x e. ( ~P A i^i Fin ) -> x e. ~P A ) |
| 121 |
120
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> x e. ~P A ) |
| 122 |
121
|
elpwid |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> x C_ A ) |
| 123 |
|
simpr |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> k e. x ) |
| 124 |
122 123
|
sseldd |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> k e. A ) |
| 125 |
119 124 3
|
syl2anc |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> B e. ( 0 [,] +oo ) ) |
| 126 |
125
|
ex |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( k e. x -> B e. ( 0 [,] +oo ) ) ) |
| 127 |
118 126
|
ralrimi |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> A. k e. x B e. ( 0 [,] +oo ) ) |
| 128 |
10 114 116 127
|
gsummptcl |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) e. ( 0 [,] +oo ) ) |
| 129 |
9 128
|
sselid |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) e. RR* ) |
| 130 |
129
|
ralrimiva |
|- ( ph -> A. x e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) e. RR* ) |
| 131 |
25
|
rnmptss |
|- ( A. x e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) e. RR* -> ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) C_ RR* ) |
| 132 |
130 131
|
syl |
|- ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) C_ RR* ) |
| 133 |
132
|
sselda |
|- ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) -> y e. RR* ) |
| 134 |
|
xrltnle |
|- ( ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. RR* /\ y e. RR* ) -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) < y <-> -. y <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) ) |
| 135 |
134
|
con2bid |
|- ( ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. RR* /\ y e. RR* ) -> ( y <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) <-> -. ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) < y ) ) |
| 136 |
113 133 135
|
syl2anc |
|- ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) -> ( y <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) <-> -. ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) < y ) ) |
| 137 |
112 136
|
mpbid |
|- ( ( ph /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) ) -> -. ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) < y ) |
| 138 |
8 16 28 137
|
supmax |
|- ( ph -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) , RR* , < ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |
| 139 |
6 138
|
eqtr2d |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) = sum* k e. A B ) |