Step |
Hyp |
Ref |
Expression |
1 |
|
esumlub.f |
|- F/ k ph |
2 |
|
esumlub.0 |
|- ( ph -> A e. V ) |
3 |
|
esumlub.1 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
4 |
|
esumlub.2 |
|- ( ph -> X e. RR* ) |
5 |
|
esumlub.3 |
|- ( ph -> X < sum* k e. A B ) |
6 |
|
nfcv |
|- F/_ k A |
7 |
|
eqidd |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) |
8 |
1 6 2 3 7
|
esumval |
|- ( ph -> sum* k e. A B = sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) , RR* , < ) ) |
9 |
8
|
breq2d |
|- ( ph -> ( X < sum* k e. A B <-> X < sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) , RR* , < ) ) ) |
10 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
11 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
12 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
13 |
12
|
a1i |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
14 |
|
inss2 |
|- ( ~P A i^i Fin ) C_ Fin |
15 |
|
simpr |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. ( ~P A i^i Fin ) ) |
16 |
14 15
|
sselid |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> x e. Fin ) |
17 |
|
nfv |
|- F/ k x e. ( ~P A i^i Fin ) |
18 |
1 17
|
nfan |
|- F/ k ( ph /\ x e. ( ~P A i^i Fin ) ) |
19 |
|
simpll |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> ph ) |
20 |
|
inss1 |
|- ( ~P A i^i Fin ) C_ ~P A |
21 |
20
|
sseli |
|- ( x e. ( ~P A i^i Fin ) -> x e. ~P A ) |
22 |
21
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> x e. ~P A ) |
23 |
22
|
elpwid |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> x C_ A ) |
24 |
|
simpr |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> k e. x ) |
25 |
23 24
|
sseldd |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> k e. A ) |
26 |
19 25 3
|
syl2anc |
|- ( ( ( ph /\ x e. ( ~P A i^i Fin ) ) /\ k e. x ) -> B e. ( 0 [,] +oo ) ) |
27 |
26
|
ex |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( k e. x -> B e. ( 0 [,] +oo ) ) ) |
28 |
18 27
|
ralrimi |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> A. k e. x B e. ( 0 [,] +oo ) ) |
29 |
11 13 16 28
|
gsummptcl |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) e. ( 0 [,] +oo ) ) |
30 |
10 29
|
sselid |
|- ( ( ph /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) e. RR* ) |
31 |
30
|
ralrimiva |
|- ( ph -> A. x e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) e. RR* ) |
32 |
|
eqid |
|- ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) = ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) |
33 |
32
|
rnmptss |
|- ( A. x e. ( ~P A i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) e. RR* -> ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) C_ RR* ) |
34 |
31 33
|
syl |
|- ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) C_ RR* ) |
35 |
|
supxrlub |
|- ( ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) C_ RR* /\ X e. RR* ) -> ( X < sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) , RR* , < ) <-> E. y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) X < y ) ) |
36 |
34 4 35
|
syl2anc |
|- ( ph -> ( X < sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) , RR* , < ) <-> E. y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) X < y ) ) |
37 |
9 36
|
bitrd |
|- ( ph -> ( X < sum* k e. A B <-> E. y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) X < y ) ) |
38 |
5 37
|
mpbid |
|- ( ph -> E. y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) X < y ) |
39 |
|
ovex |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) e. _V |
40 |
39
|
a1i |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) e. _V ) |
41 |
|
mpteq1 |
|- ( x = a -> ( k e. x |-> B ) = ( k e. a |-> B ) ) |
42 |
41
|
oveq2d |
|- ( x = a -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
43 |
42
|
cbvmptv |
|- ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) = ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
44 |
43 39
|
elrnmpti |
|- ( y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) <-> E. a e. ( ~P A i^i Fin ) y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
45 |
44
|
a1i |
|- ( ph -> ( y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) <-> E. a e. ( ~P A i^i Fin ) y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) ) |
46 |
|
simpr |
|- ( ( ph /\ y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) -> y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
47 |
46
|
breq2d |
|- ( ( ph /\ y = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) -> ( X < y <-> X < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) ) |
48 |
40 45 47
|
rexxfr2d |
|- ( ph -> ( E. y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) ) X < y <-> E. a e. ( ~P A i^i Fin ) X < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) ) |
49 |
38 48
|
mpbid |
|- ( ph -> E. a e. ( ~P A i^i Fin ) X < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) ) |
50 |
|
nfv |
|- F/ k a e. ( ~P A i^i Fin ) |
51 |
1 50
|
nfan |
|- F/ k ( ph /\ a e. ( ~P A i^i Fin ) ) |
52 |
|
simpr |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> a e. ( ~P A i^i Fin ) ) |
53 |
14 52
|
sselid |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> a e. Fin ) |
54 |
|
simpll |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> ph ) |
55 |
20
|
sseli |
|- ( a e. ( ~P A i^i Fin ) -> a e. ~P A ) |
56 |
55
|
ad2antlr |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> a e. ~P A ) |
57 |
56
|
elpwid |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> a C_ A ) |
58 |
|
simpr |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> k e. a ) |
59 |
57 58
|
sseldd |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> k e. A ) |
60 |
54 59 3
|
syl2anc |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ k e. a ) -> B e. ( 0 [,] +oo ) ) |
61 |
51 53 60
|
gsumesum |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) = sum* k e. a B ) |
62 |
61
|
breq2d |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( X < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) <-> X < sum* k e. a B ) ) |
63 |
62
|
biimpd |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( X < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) -> X < sum* k e. a B ) ) |
64 |
63
|
reximdva |
|- ( ph -> ( E. a e. ( ~P A i^i Fin ) X < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. a |-> B ) ) -> E. a e. ( ~P A i^i Fin ) X < sum* k e. a B ) ) |
65 |
49 64
|
mpd |
|- ( ph -> E. a e. ( ~P A i^i Fin ) X < sum* k e. a B ) |