| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumlub.f |
|
| 2 |
|
esumlub.0 |
|
| 3 |
|
esumlub.1 |
|
| 4 |
|
esumlub.2 |
|
| 5 |
|
esumlub.3 |
|
| 6 |
|
nfcv |
|
| 7 |
|
eqidd |
|
| 8 |
1 6 2 3 7
|
esumval |
|
| 9 |
8
|
breq2d |
|
| 10 |
|
iccssxr |
|
| 11 |
|
xrge0base |
|
| 12 |
|
xrge0cmn |
|
| 13 |
12
|
a1i |
|
| 14 |
|
inss2 |
|
| 15 |
|
simpr |
|
| 16 |
14 15
|
sselid |
|
| 17 |
|
nfv |
|
| 18 |
1 17
|
nfan |
|
| 19 |
|
simpll |
|
| 20 |
|
inss1 |
|
| 21 |
20
|
sseli |
|
| 22 |
21
|
ad2antlr |
|
| 23 |
22
|
elpwid |
|
| 24 |
|
simpr |
|
| 25 |
23 24
|
sseldd |
|
| 26 |
19 25 3
|
syl2anc |
|
| 27 |
26
|
ex |
|
| 28 |
18 27
|
ralrimi |
|
| 29 |
11 13 16 28
|
gsummptcl |
|
| 30 |
10 29
|
sselid |
|
| 31 |
30
|
ralrimiva |
|
| 32 |
|
eqid |
|
| 33 |
32
|
rnmptss |
|
| 34 |
31 33
|
syl |
|
| 35 |
|
supxrlub |
|
| 36 |
34 4 35
|
syl2anc |
|
| 37 |
9 36
|
bitrd |
|
| 38 |
5 37
|
mpbid |
|
| 39 |
|
ovex |
|
| 40 |
39
|
a1i |
|
| 41 |
|
mpteq1 |
|
| 42 |
41
|
oveq2d |
|
| 43 |
42
|
cbvmptv |
|
| 44 |
43 39
|
elrnmpti |
|
| 45 |
44
|
a1i |
|
| 46 |
|
simpr |
|
| 47 |
46
|
breq2d |
|
| 48 |
40 45 47
|
rexxfr2d |
|
| 49 |
38 48
|
mpbid |
|
| 50 |
|
nfv |
|
| 51 |
1 50
|
nfan |
|
| 52 |
|
simpr |
|
| 53 |
14 52
|
sselid |
|
| 54 |
|
simpll |
|
| 55 |
20
|
sseli |
|
| 56 |
55
|
ad2antlr |
|
| 57 |
56
|
elpwid |
|
| 58 |
|
simpr |
|
| 59 |
57 58
|
sseldd |
|
| 60 |
54 59 3
|
syl2anc |
|
| 61 |
51 53 60
|
gsumesum |
|
| 62 |
61
|
breq2d |
|
| 63 |
62
|
biimpd |
|
| 64 |
63
|
reximdva |
|
| 65 |
49 64
|
mpd |
|