Metamath Proof Explorer


Theorem esumlub

Description: The extended sum is the lowest upper bound for the partial sums. (Contributed by Thierry Arnoux, 19-Oct-2017) (Proof shortened by AV, 12-Dec-2019)

Ref Expression
Hypotheses esumlub.f k φ
esumlub.0 φ A V
esumlub.1 φ k A B 0 +∞
esumlub.2 φ X *
esumlub.3 φ X < * k A B
Assertion esumlub φ a 𝒫 A Fin X < * k a B

Proof

Step Hyp Ref Expression
1 esumlub.f k φ
2 esumlub.0 φ A V
3 esumlub.1 φ k A B 0 +∞
4 esumlub.2 φ X *
5 esumlub.3 φ X < * k A B
6 nfcv _ k A
7 eqidd φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B = 𝑠 * 𝑠 0 +∞ k x B
8 1 6 2 3 7 esumval φ * k A B = sup ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B * <
9 8 breq2d φ X < * k A B X < sup ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B * <
10 iccssxr 0 +∞ *
11 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
12 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
13 12 a1i φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ CMnd
14 inss2 𝒫 A Fin Fin
15 simpr φ x 𝒫 A Fin x 𝒫 A Fin
16 14 15 sselid φ x 𝒫 A Fin x Fin
17 nfv k x 𝒫 A Fin
18 1 17 nfan k φ x 𝒫 A Fin
19 simpll φ x 𝒫 A Fin k x φ
20 inss1 𝒫 A Fin 𝒫 A
21 20 sseli x 𝒫 A Fin x 𝒫 A
22 21 ad2antlr φ x 𝒫 A Fin k x x 𝒫 A
23 22 elpwid φ x 𝒫 A Fin k x x A
24 simpr φ x 𝒫 A Fin k x k x
25 23 24 sseldd φ x 𝒫 A Fin k x k A
26 19 25 3 syl2anc φ x 𝒫 A Fin k x B 0 +∞
27 26 ex φ x 𝒫 A Fin k x B 0 +∞
28 18 27 ralrimi φ x 𝒫 A Fin k x B 0 +∞
29 11 13 16 28 gsummptcl φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B 0 +∞
30 10 29 sselid φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B *
31 30 ralrimiva φ x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B *
32 eqid x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B = x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B
33 32 rnmptss x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B * ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B *
34 31 33 syl φ ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B *
35 supxrlub ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B * X * X < sup ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B * < y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B X < y
36 34 4 35 syl2anc φ X < sup ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B * < y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B X < y
37 9 36 bitrd φ X < * k A B y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B X < y
38 5 37 mpbid φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B X < y
39 ovex 𝑠 * 𝑠 0 +∞ k a B V
40 39 a1i φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B V
41 mpteq1 x = a k x B = k a B
42 41 oveq2d x = a 𝑠 * 𝑠 0 +∞ k x B = 𝑠 * 𝑠 0 +∞ k a B
43 42 cbvmptv x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B = a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B
44 43 39 elrnmpti y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin y = 𝑠 * 𝑠 0 +∞ k a B
45 44 a1i φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B a 𝒫 A Fin y = 𝑠 * 𝑠 0 +∞ k a B
46 simpr φ y = 𝑠 * 𝑠 0 +∞ k a B y = 𝑠 * 𝑠 0 +∞ k a B
47 46 breq2d φ y = 𝑠 * 𝑠 0 +∞ k a B X < y X < 𝑠 * 𝑠 0 +∞ k a B
48 40 45 47 rexxfr2d φ y ran x 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k x B X < y a 𝒫 A Fin X < 𝑠 * 𝑠 0 +∞ k a B
49 38 48 mpbid φ a 𝒫 A Fin X < 𝑠 * 𝑠 0 +∞ k a B
50 nfv k a 𝒫 A Fin
51 1 50 nfan k φ a 𝒫 A Fin
52 simpr φ a 𝒫 A Fin a 𝒫 A Fin
53 14 52 sselid φ a 𝒫 A Fin a Fin
54 simpll φ a 𝒫 A Fin k a φ
55 20 sseli a 𝒫 A Fin a 𝒫 A
56 55 ad2antlr φ a 𝒫 A Fin k a a 𝒫 A
57 56 elpwid φ a 𝒫 A Fin k a a A
58 simpr φ a 𝒫 A Fin k a k a
59 57 58 sseldd φ a 𝒫 A Fin k a k A
60 54 59 3 syl2anc φ a 𝒫 A Fin k a B 0 +∞
61 51 53 60 gsumesum φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ k a B = * k a B
62 61 breq2d φ a 𝒫 A Fin X < 𝑠 * 𝑠 0 +∞ k a B X < * k a B
63 62 biimpd φ a 𝒫 A Fin X < 𝑠 * 𝑠 0 +∞ k a B X < * k a B
64 63 reximdva φ a 𝒫 A Fin X < 𝑠 * 𝑠 0 +∞ k a B a 𝒫 A Fin X < * k a B
65 49 64 mpd φ a 𝒫 A Fin X < * k a B