Step |
Hyp |
Ref |
Expression |
1 |
|
esumlub.f |
|
2 |
|
esumlub.0 |
|
3 |
|
esumlub.1 |
|
4 |
|
esumlub.2 |
|
5 |
|
esumlub.3 |
|
6 |
|
nfcv |
|
7 |
|
eqidd |
|
8 |
1 6 2 3 7
|
esumval |
|
9 |
8
|
breq2d |
|
10 |
|
iccssxr |
|
11 |
|
xrge0base |
|
12 |
|
xrge0cmn |
|
13 |
12
|
a1i |
|
14 |
|
inss2 |
|
15 |
|
simpr |
|
16 |
14 15
|
sselid |
|
17 |
|
nfv |
|
18 |
1 17
|
nfan |
|
19 |
|
simpll |
|
20 |
|
inss1 |
|
21 |
20
|
sseli |
|
22 |
21
|
ad2antlr |
|
23 |
22
|
elpwid |
|
24 |
|
simpr |
|
25 |
23 24
|
sseldd |
|
26 |
19 25 3
|
syl2anc |
|
27 |
26
|
ex |
|
28 |
18 27
|
ralrimi |
|
29 |
11 13 16 28
|
gsummptcl |
|
30 |
10 29
|
sselid |
|
31 |
30
|
ralrimiva |
|
32 |
|
eqid |
|
33 |
32
|
rnmptss |
|
34 |
31 33
|
syl |
|
35 |
|
supxrlub |
|
36 |
34 4 35
|
syl2anc |
|
37 |
9 36
|
bitrd |
|
38 |
5 37
|
mpbid |
|
39 |
|
ovex |
|
40 |
39
|
a1i |
|
41 |
|
mpteq1 |
|
42 |
41
|
oveq2d |
|
43 |
42
|
cbvmptv |
|
44 |
43 39
|
elrnmpti |
|
45 |
44
|
a1i |
|
46 |
|
simpr |
|
47 |
46
|
breq2d |
|
48 |
40 45 47
|
rexxfr2d |
|
49 |
38 48
|
mpbid |
|
50 |
|
nfv |
|
51 |
1 50
|
nfan |
|
52 |
|
simpr |
|
53 |
14 52
|
sselid |
|
54 |
|
simpll |
|
55 |
20
|
sseli |
|
56 |
55
|
ad2antlr |
|
57 |
56
|
elpwid |
|
58 |
|
simpr |
|
59 |
57 58
|
sseldd |
|
60 |
54 59 3
|
syl2anc |
|
61 |
51 53 60
|
gsumesum |
|
62 |
61
|
breq2d |
|
63 |
62
|
biimpd |
|
64 |
63
|
reximdva |
|
65 |
49 64
|
mpd |
|