Metamath Proof Explorer


Theorem supmax

Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008) (Proof shortened by OpenAI, 30-Mar-2020)

Ref Expression
Hypotheses supmax.1 φROrA
supmax.2 φCA
supmax.3 φCB
supmax.4 φyB¬CRy
Assertion supmax φsupBAR=C

Proof

Step Hyp Ref Expression
1 supmax.1 φROrA
2 supmax.2 φCA
3 supmax.3 φCB
4 supmax.4 φyB¬CRy
5 simprr φyAyRCyRC
6 breq2 z=CyRzyRC
7 6 rspcev CByRCzByRz
8 3 5 7 syl2an2r φyAyRCzByRz
9 1 2 4 8 eqsupd φsupBAR=C