Metamath Proof Explorer


Theorem fisup2g

Description: A finite set satisfies the conditions to have a supremum. (Contributed by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fisup2g ROrABFinBBAxByB¬xRyyAyRxzByRz

Proof

Step Hyp Ref Expression
1 soss BAROrAROrB
2 simp1 ROrBBFinBROrB
3 fisupg ROrBBFinBxByB¬xRyyByRxzByRz
4 2 3 supeu ROrBBFinB∃!xByB¬xRyyByRxzByRz
5 4 3exp ROrBBFinB∃!xByB¬xRyyByRxzByRz
6 1 5 syl6 BAROrABFinB∃!xByB¬xRyyByRxzByRz
7 6 com4l ROrABFinBBA∃!xByB¬xRyyByRxzByRz
8 7 3imp2 ROrABFinBBA∃!xByB¬xRyyByRxzByRz
9 reurex ∃!xByB¬xRyyByRxzByRzxByB¬xRyyByRxzByRz
10 breq2 z=xyRzyRx
11 10 rspcev xByRxzByRz
12 11 ex xByRxzByRz
13 12 ralrimivw xByAyRxzByRz
14 13 a1d xByByRxzByRzyAyRxzByRz
15 14 anim2d xByB¬xRyyByRxzByRzyB¬xRyyAyRxzByRz
16 15 reximia xByB¬xRyyByRxzByRzxByB¬xRyyAyRxzByRz
17 8 9 16 3syl ROrABFinBBAxByB¬xRyyAyRxzByRz