Step |
Hyp |
Ref |
Expression |
1 |
|
esumpad.1 |
|- ( ph -> A e. V ) |
2 |
|
esumpad.2 |
|- ( ph -> B e. W ) |
3 |
|
esumpad.3 |
|- ( ( ph /\ k e. A ) -> C e. ( 0 [,] +oo ) ) |
4 |
|
esumpad.4 |
|- ( ( ph /\ k e. B ) -> C = 0 ) |
5 |
|
nfv |
|- F/ k ph |
6 |
|
nfcv |
|- F/_ k A |
7 |
|
nfcv |
|- F/_ k ( B \ A ) |
8 |
|
elex |
|- ( A e. V -> A e. _V ) |
9 |
1 8
|
syl |
|- ( ph -> A e. _V ) |
10 |
2
|
difexd |
|- ( ph -> ( B \ A ) e. _V ) |
11 |
|
disjdif |
|- ( A i^i ( B \ A ) ) = (/) |
12 |
11
|
a1i |
|- ( ph -> ( A i^i ( B \ A ) ) = (/) ) |
13 |
|
difssd |
|- ( ph -> ( B \ A ) C_ B ) |
14 |
13
|
sselda |
|- ( ( ph /\ k e. ( B \ A ) ) -> k e. B ) |
15 |
|
0e0iccpnf |
|- 0 e. ( 0 [,] +oo ) |
16 |
4 15
|
eqeltrdi |
|- ( ( ph /\ k e. B ) -> C e. ( 0 [,] +oo ) ) |
17 |
14 16
|
syldan |
|- ( ( ph /\ k e. ( B \ A ) ) -> C e. ( 0 [,] +oo ) ) |
18 |
5 6 7 9 10 12 3 17
|
esumsplit |
|- ( ph -> sum* k e. ( A u. ( B \ A ) ) C = ( sum* k e. A C +e sum* k e. ( B \ A ) C ) ) |
19 |
|
undif2 |
|- ( A u. ( B \ A ) ) = ( A u. B ) |
20 |
|
esumeq1 |
|- ( ( A u. ( B \ A ) ) = ( A u. B ) -> sum* k e. ( A u. ( B \ A ) ) C = sum* k e. ( A u. B ) C ) |
21 |
19 20
|
ax-mp |
|- sum* k e. ( A u. ( B \ A ) ) C = sum* k e. ( A u. B ) C |
22 |
21
|
a1i |
|- ( ph -> sum* k e. ( A u. ( B \ A ) ) C = sum* k e. ( A u. B ) C ) |
23 |
14 4
|
syldan |
|- ( ( ph /\ k e. ( B \ A ) ) -> C = 0 ) |
24 |
23
|
ralrimiva |
|- ( ph -> A. k e. ( B \ A ) C = 0 ) |
25 |
5 24
|
esumeq2d |
|- ( ph -> sum* k e. ( B \ A ) C = sum* k e. ( B \ A ) 0 ) |
26 |
7
|
esum0 |
|- ( ( B \ A ) e. _V -> sum* k e. ( B \ A ) 0 = 0 ) |
27 |
10 26
|
syl |
|- ( ph -> sum* k e. ( B \ A ) 0 = 0 ) |
28 |
25 27
|
eqtrd |
|- ( ph -> sum* k e. ( B \ A ) C = 0 ) |
29 |
28
|
oveq2d |
|- ( ph -> ( sum* k e. A C +e sum* k e. ( B \ A ) C ) = ( sum* k e. A C +e 0 ) ) |
30 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
31 |
3
|
ralrimiva |
|- ( ph -> A. k e. A C e. ( 0 [,] +oo ) ) |
32 |
6
|
esumcl |
|- ( ( A e. V /\ A. k e. A C e. ( 0 [,] +oo ) ) -> sum* k e. A C e. ( 0 [,] +oo ) ) |
33 |
1 31 32
|
syl2anc |
|- ( ph -> sum* k e. A C e. ( 0 [,] +oo ) ) |
34 |
30 33
|
sselid |
|- ( ph -> sum* k e. A C e. RR* ) |
35 |
|
xaddid1 |
|- ( sum* k e. A C e. RR* -> ( sum* k e. A C +e 0 ) = sum* k e. A C ) |
36 |
34 35
|
syl |
|- ( ph -> ( sum* k e. A C +e 0 ) = sum* k e. A C ) |
37 |
29 36
|
eqtrd |
|- ( ph -> ( sum* k e. A C +e sum* k e. ( B \ A ) C ) = sum* k e. A C ) |
38 |
18 22 37
|
3eqtr3d |
|- ( ph -> sum* k e. ( A u. B ) C = sum* k e. A C ) |