Metamath Proof Explorer


Theorem esumid

Description: Identify the extended sum as any limit points of the infinite sum. (Contributed by Thierry Arnoux, 9-May-2017)

Ref Expression
Hypotheses esumid.p
|- F/ k ph
esumid.0
|- F/_ k A
esumid.1
|- ( ph -> A e. V )
esumid.2
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
esumid.3
|- ( ph -> C e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) )
Assertion esumid
|- ( ph -> sum* k e. A B = C )

Proof

Step Hyp Ref Expression
1 esumid.p
 |-  F/ k ph
2 esumid.0
 |-  F/_ k A
3 esumid.1
 |-  ( ph -> A e. V )
4 esumid.2
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
5 esumid.3
 |-  ( ph -> C e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) )
6 df-esum
 |-  sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )
7 eqid
 |-  ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) )
8 nfcv
 |-  F/_ k ( 0 [,] +oo )
9 eqid
 |-  ( k e. A |-> B ) = ( k e. A |-> B )
10 1 2 8 4 9 fmptdF
 |-  ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) )
11 7 3 10 5 xrge0tsmseq
 |-  ( ph -> C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) )
12 6 11 eqtr4id
 |-  ( ph -> sum* k e. A B = C )