| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumid.p |
|- F/ k ph |
| 2 |
|
esumid.0 |
|- F/_ k A |
| 3 |
|
esumid.1 |
|- ( ph -> A e. V ) |
| 4 |
|
esumid.2 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 5 |
|
esumid.3 |
|- ( ph -> C e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) ) |
| 6 |
|
df-esum |
|- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
| 7 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 8 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
| 9 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
| 10 |
1 2 8 4 9
|
fmptdF |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
| 11 |
7 3 10 5
|
xrge0tsmseq |
|- ( ph -> C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) ) |
| 12 |
6 11
|
eqtr4id |
|- ( ph -> sum* k e. A B = C ) |