| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumgsum.1 |
|- F/ k ph |
| 2 |
|
esumgsum.2 |
|- F/_ k A |
| 3 |
|
esumgsum.3 |
|- ( ph -> A e. Fin ) |
| 4 |
|
esumgsum.4 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 5 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 6 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 7 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| 8 |
7
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 9 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
| 10 |
9
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) |
| 11 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
| 12 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
| 13 |
1 2 11 4 12
|
fmptdF |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
| 14 |
4
|
ex |
|- ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) ) |
| 15 |
1 14
|
ralrimi |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
| 16 |
2
|
fnmptf |
|- ( A. k e. A B e. ( 0 [,] +oo ) -> ( k e. A |-> B ) Fn A ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( k e. A |-> B ) Fn A ) |
| 18 |
|
0xr |
|- 0 e. RR* |
| 19 |
18
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 20 |
17 3 19
|
fndmfifsupp |
|- ( ph -> ( k e. A |-> B ) finSupp 0 ) |
| 21 |
5 6 8 10 3 13 20
|
tsmsid |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) ) |
| 22 |
1 2 3 4 21
|
esumid |
|- ( ph -> sum* k e. A B = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |