Metamath Proof Explorer


Theorem esumgsum

Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020)

Ref Expression
Hypotheses esumgsum.1
|- F/ k ph
esumgsum.2
|- F/_ k A
esumgsum.3
|- ( ph -> A e. Fin )
esumgsum.4
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
Assertion esumgsum
|- ( ph -> sum* k e. A B = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) )

Proof

Step Hyp Ref Expression
1 esumgsum.1
 |-  F/ k ph
2 esumgsum.2
 |-  F/_ k A
3 esumgsum.3
 |-  ( ph -> A e. Fin )
4 esumgsum.4
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) )
5 xrge0base
 |-  ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) )
6 xrge00
 |-  0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) )
7 xrge0cmn
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd
8 7 a1i
 |-  ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd )
9 xrge0tps
 |-  ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp
10 9 a1i
 |-  ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp )
11 nfcv
 |-  F/_ k ( 0 [,] +oo )
12 eqid
 |-  ( k e. A |-> B ) = ( k e. A |-> B )
13 1 2 11 4 12 fmptdF
 |-  ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) )
14 4 ex
 |-  ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) )
15 1 14 ralrimi
 |-  ( ph -> A. k e. A B e. ( 0 [,] +oo ) )
16 2 fnmptf
 |-  ( A. k e. A B e. ( 0 [,] +oo ) -> ( k e. A |-> B ) Fn A )
17 15 16 syl
 |-  ( ph -> ( k e. A |-> B ) Fn A )
18 0xr
 |-  0 e. RR*
19 18 a1i
 |-  ( ph -> 0 e. RR* )
20 17 3 19 fndmfifsupp
 |-  ( ph -> ( k e. A |-> B ) finSupp 0 )
21 5 6 8 10 3 13 20 tsmsid
 |-  ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) )
22 1 2 3 4 21 esumid
 |-  ( ph -> sum* k e. A B = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) )