Step |
Hyp |
Ref |
Expression |
1 |
|
esumgsum.1 |
|- F/ k ph |
2 |
|
esumgsum.2 |
|- F/_ k A |
3 |
|
esumgsum.3 |
|- ( ph -> A e. Fin ) |
4 |
|
esumgsum.4 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
5 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
6 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
7 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
8 |
7
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
9 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
10 |
9
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) |
11 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
12 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
13 |
1 2 11 4 12
|
fmptdF |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,] +oo ) ) |
14 |
4
|
ex |
|- ( ph -> ( k e. A -> B e. ( 0 [,] +oo ) ) ) |
15 |
1 14
|
ralrimi |
|- ( ph -> A. k e. A B e. ( 0 [,] +oo ) ) |
16 |
2
|
fnmptf |
|- ( A. k e. A B e. ( 0 [,] +oo ) -> ( k e. A |-> B ) Fn A ) |
17 |
15 16
|
syl |
|- ( ph -> ( k e. A |-> B ) Fn A ) |
18 |
|
0xr |
|- 0 e. RR* |
19 |
18
|
a1i |
|- ( ph -> 0 e. RR* ) |
20 |
17 3 19
|
fndmfifsupp |
|- ( ph -> ( k e. A |-> B ) finSupp 0 ) |
21 |
5 6 8 10 3 13 20
|
tsmsid |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) e. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) ) |
22 |
1 2 3 4 21
|
esumid |
|- ( ph -> sum* k e. A B = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. A |-> B ) ) ) |