Step |
Hyp |
Ref |
Expression |
1 |
|
esumgsum.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
esumgsum.2 |
⊢ Ⅎ 𝑘 𝐴 |
3 |
|
esumgsum.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
esumgsum.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
5 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
6 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
7 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
9 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
12 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
13 |
1 2 11 4 12
|
fmptdF |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
14 |
4
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
15 |
1 14
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
16 |
2
|
fnmptf |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
18 |
|
0xr |
⊢ 0 ∈ ℝ* |
19 |
18
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
20 |
17 3 19
|
fndmfifsupp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) finSupp 0 ) |
21 |
5 6 8 10 3 13 20
|
tsmsid |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
22 |
1 2 3 4 21
|
esumid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |