Metamath Proof Explorer


Theorem esumgsum

Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020)

Ref Expression
Hypotheses esumgsum.1 𝑘 𝜑
esumgsum.2 𝑘 𝐴
esumgsum.3 ( 𝜑𝐴 ∈ Fin )
esumgsum.4 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
Assertion esumgsum ( 𝜑 → Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 esumgsum.1 𝑘 𝜑
2 esumgsum.2 𝑘 𝐴
3 esumgsum.3 ( 𝜑𝐴 ∈ Fin )
4 esumgsum.4 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
5 xrge0base ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
6 xrge00 0 = ( 0g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
7 xrge0cmn ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd
8 7 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd )
9 xrge0tps ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopSp
10 9 a1i ( 𝜑 → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopSp )
11 nfcv 𝑘 ( 0 [,] +∞ )
12 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
13 1 2 11 4 12 fmptdF ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
14 4 ex ( 𝜑 → ( 𝑘𝐴𝐵 ∈ ( 0 [,] +∞ ) ) )
15 1 14 ralrimi ( 𝜑 → ∀ 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
16 2 fnmptf ( ∀ 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) → ( 𝑘𝐴𝐵 ) Fn 𝐴 )
17 15 16 syl ( 𝜑 → ( 𝑘𝐴𝐵 ) Fn 𝐴 )
18 0xr 0 ∈ ℝ*
19 18 a1i ( 𝜑 → 0 ∈ ℝ* )
20 17 3 19 fndmfifsupp ( 𝜑 → ( 𝑘𝐴𝐵 ) finSupp 0 )
21 5 6 8 10 3 13 20 tsmsid ( 𝜑 → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) ∈ ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) ) )
22 1 2 3 4 21 esumid ( 𝜑 → Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝐴𝐵 ) ) )