| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumgsum.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
esumgsum.2 |
⊢ Ⅎ 𝑘 𝐴 |
| 3 |
|
esumgsum.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
esumgsum.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 5 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 6 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 7 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 9 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp ) |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
| 12 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
| 13 |
1 2 11 4 12
|
fmptdF |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
| 14 |
4
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
| 15 |
1 14
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 16 |
2
|
fnmptf |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 18 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 20 |
17 3 19
|
fndmfifsupp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) finSupp 0 ) |
| 21 |
5 6 8 10 3 13 20
|
tsmsid |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ∈ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 22 |
1 2 3 4 21
|
esumid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |