Metamath Proof Explorer


Theorem tsmsid

Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015) (Revised by AV, 24-Jul-2019)

Ref Expression
Hypotheses tsmsid.b
|- B = ( Base ` G )
tsmsid.z
|- .0. = ( 0g ` G )
tsmsid.1
|- ( ph -> G e. CMnd )
tsmsid.2
|- ( ph -> G e. TopSp )
tsmsid.a
|- ( ph -> A e. V )
tsmsid.f
|- ( ph -> F : A --> B )
tsmsid.w
|- ( ph -> F finSupp .0. )
Assertion tsmsid
|- ( ph -> ( G gsum F ) e. ( G tsums F ) )

Proof

Step Hyp Ref Expression
1 tsmsid.b
 |-  B = ( Base ` G )
2 tsmsid.z
 |-  .0. = ( 0g ` G )
3 tsmsid.1
 |-  ( ph -> G e. CMnd )
4 tsmsid.2
 |-  ( ph -> G e. TopSp )
5 tsmsid.a
 |-  ( ph -> A e. V )
6 tsmsid.f
 |-  ( ph -> F : A --> B )
7 tsmsid.w
 |-  ( ph -> F finSupp .0. )
8 eqid
 |-  ( TopOpen ` G ) = ( TopOpen ` G )
9 1 8 istps
 |-  ( G e. TopSp <-> ( TopOpen ` G ) e. ( TopOn ` B ) )
10 4 9 sylib
 |-  ( ph -> ( TopOpen ` G ) e. ( TopOn ` B ) )
11 topontop
 |-  ( ( TopOpen ` G ) e. ( TopOn ` B ) -> ( TopOpen ` G ) e. Top )
12 10 11 syl
 |-  ( ph -> ( TopOpen ` G ) e. Top )
13 1 2 3 5 6 7 gsumcl
 |-  ( ph -> ( G gsum F ) e. B )
14 13 snssd
 |-  ( ph -> { ( G gsum F ) } C_ B )
15 toponuni
 |-  ( ( TopOpen ` G ) e. ( TopOn ` B ) -> B = U. ( TopOpen ` G ) )
16 10 15 syl
 |-  ( ph -> B = U. ( TopOpen ` G ) )
17 14 16 sseqtrd
 |-  ( ph -> { ( G gsum F ) } C_ U. ( TopOpen ` G ) )
18 eqid
 |-  U. ( TopOpen ` G ) = U. ( TopOpen ` G )
19 18 sscls
 |-  ( ( ( TopOpen ` G ) e. Top /\ { ( G gsum F ) } C_ U. ( TopOpen ` G ) ) -> { ( G gsum F ) } C_ ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) )
20 12 17 19 syl2anc
 |-  ( ph -> { ( G gsum F ) } C_ ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) )
21 ovex
 |-  ( G gsum F ) e. _V
22 21 snss
 |-  ( ( G gsum F ) e. ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) <-> { ( G gsum F ) } C_ ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) )
23 20 22 sylibr
 |-  ( ph -> ( G gsum F ) e. ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) )
24 1 2 3 4 5 6 7 8 tsmsgsum
 |-  ( ph -> ( G tsums F ) = ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) )
25 23 24 eleqtrrd
 |-  ( ph -> ( G gsum F ) e. ( G tsums F ) )