| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsmsid.b |
|- B = ( Base ` G ) |
| 2 |
|
tsmsid.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
tsmsid.1 |
|- ( ph -> G e. CMnd ) |
| 4 |
|
tsmsid.2 |
|- ( ph -> G e. TopSp ) |
| 5 |
|
tsmsid.a |
|- ( ph -> A e. V ) |
| 6 |
|
tsmsid.f |
|- ( ph -> F : A --> B ) |
| 7 |
|
tsmsid.w |
|- ( ph -> F finSupp .0. ) |
| 8 |
|
eqid |
|- ( TopOpen ` G ) = ( TopOpen ` G ) |
| 9 |
1 8
|
istps |
|- ( G e. TopSp <-> ( TopOpen ` G ) e. ( TopOn ` B ) ) |
| 10 |
4 9
|
sylib |
|- ( ph -> ( TopOpen ` G ) e. ( TopOn ` B ) ) |
| 11 |
|
topontop |
|- ( ( TopOpen ` G ) e. ( TopOn ` B ) -> ( TopOpen ` G ) e. Top ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( TopOpen ` G ) e. Top ) |
| 13 |
1 2 3 5 6 7
|
gsumcl |
|- ( ph -> ( G gsum F ) e. B ) |
| 14 |
13
|
snssd |
|- ( ph -> { ( G gsum F ) } C_ B ) |
| 15 |
|
toponuni |
|- ( ( TopOpen ` G ) e. ( TopOn ` B ) -> B = U. ( TopOpen ` G ) ) |
| 16 |
10 15
|
syl |
|- ( ph -> B = U. ( TopOpen ` G ) ) |
| 17 |
14 16
|
sseqtrd |
|- ( ph -> { ( G gsum F ) } C_ U. ( TopOpen ` G ) ) |
| 18 |
|
eqid |
|- U. ( TopOpen ` G ) = U. ( TopOpen ` G ) |
| 19 |
18
|
sscls |
|- ( ( ( TopOpen ` G ) e. Top /\ { ( G gsum F ) } C_ U. ( TopOpen ` G ) ) -> { ( G gsum F ) } C_ ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 20 |
12 17 19
|
syl2anc |
|- ( ph -> { ( G gsum F ) } C_ ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 21 |
|
ovex |
|- ( G gsum F ) e. _V |
| 22 |
21
|
snss |
|- ( ( G gsum F ) e. ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) <-> { ( G gsum F ) } C_ ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 23 |
20 22
|
sylibr |
|- ( ph -> ( G gsum F ) e. ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 24 |
1 2 3 4 5 6 7 8
|
tsmsgsum |
|- ( ph -> ( G tsums F ) = ( ( cls ` ( TopOpen ` G ) ) ` { ( G gsum F ) } ) ) |
| 25 |
23 24
|
eleqtrrd |
|- ( ph -> ( G gsum F ) e. ( G tsums F ) ) |