| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsmssplit.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
tsmssplit.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
tsmssplit.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
tsmssplit.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) |
| 5 |
|
tsmssplit.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
tsmssplit.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
|
tsmssplit.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums ( 𝐹 ↾ 𝐶 ) ) ) |
| 8 |
|
tsmssplit.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐺 tsums ( 𝐹 ↾ 𝐷 ) ) ) |
| 9 |
|
tsmssplit.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 10 |
|
tsmssplit.u |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) |
| 11 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 12 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 14 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 15 |
1 14
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 16 |
13 15
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 18 |
11 17
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ∈ 𝐵 ) |
| 19 |
18
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) : 𝐴 ⟶ 𝐵 ) |
| 20 |
11 17
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ∈ 𝐵 ) |
| 21 |
20
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) : 𝐴 ⟶ 𝐵 ) |
| 22 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 23 |
22
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
| 24 |
|
ssun1 |
⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) |
| 25 |
24 10
|
sseqtrrid |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 26 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐶 → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 27 |
26
|
mpteq2ia |
⊢ ( 𝑘 ∈ 𝐶 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 28 |
|
resmpt |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐶 ) = ( 𝑘 ∈ 𝐶 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) |
| 29 |
|
resmpt |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 30 |
27 28 29
|
3eqtr4a |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
| 31 |
25 30
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
| 32 |
23 31
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐶 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ↾ 𝐶 ) ) = ( 𝐺 tsums ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐶 ) ) ) |
| 34 |
|
tmdtps |
⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ TopSp ) |
| 35 |
4 34
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 36 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) → ¬ 𝑘 ∈ 𝐶 ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → ¬ 𝑘 ∈ 𝐶 ) |
| 38 |
37
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 39 |
38 5
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ 𝐶 ) |
| 40 |
1 14 3 35 5 19 39
|
tsmsres |
⊢ ( 𝜑 → ( 𝐺 tsums ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐶 ) ) = ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) |
| 41 |
33 40
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ↾ 𝐶 ) ) = ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) |
| 42 |
7 41
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) |
| 43 |
22
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
| 44 |
|
ssun2 |
⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) |
| 45 |
44 10
|
sseqtrrid |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
| 46 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐷 → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 47 |
46
|
mpteq2ia |
⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 48 |
|
resmpt |
⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐷 ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) |
| 49 |
|
resmpt |
⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 50 |
47 48 49
|
3eqtr4a |
⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
| 51 |
45 50
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
| 52 |
43 51
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐷 ) ) |
| 53 |
52
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ↾ 𝐷 ) ) = ( 𝐺 tsums ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐷 ) ) ) |
| 54 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) → ¬ 𝑘 ∈ 𝐷 ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) ) → ¬ 𝑘 ∈ 𝐷 ) |
| 56 |
55
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 57 |
56 5
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ 𝐷 ) |
| 58 |
1 14 3 35 5 21 57
|
tsmsres |
⊢ ( 𝜑 → ( 𝐺 tsums ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ↾ 𝐷 ) ) = ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) |
| 59 |
53 58
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ↾ 𝐷 ) ) = ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) |
| 60 |
8 59
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) |
| 61 |
1 2 3 4 5 19 21 42 60
|
tsmsadd |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝐺 tsums ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) ) |
| 62 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 63 |
|
noel |
⊢ ¬ 𝑘 ∈ ∅ |
| 64 |
|
eleq2 |
⊢ ( ( 𝐶 ∩ 𝐷 ) = ∅ → ( 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ↔ 𝑘 ∈ ∅ ) ) |
| 65 |
63 64
|
mtbiri |
⊢ ( ( 𝐶 ∩ 𝐷 ) = ∅ → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
| 66 |
9 65
|
syl |
⊢ ( 𝜑 → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
| 68 |
|
elin |
⊢ ( 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
| 69 |
67 68
|
sylnib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
| 70 |
|
imnan |
⊢ ( ( 𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷 ) ↔ ¬ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
| 71 |
69 70
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷 ) ) |
| 72 |
71
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ¬ 𝑘 ∈ 𝐷 ) |
| 73 |
72
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 74 |
62 73
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) + ( 0g ‘ 𝐺 ) ) ) |
| 75 |
1 2 14
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) + ( 0g ‘ 𝐺 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 76 |
13 11 75
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) + ( 0g ‘ 𝐺 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 77 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑘 ) + ( 0g ‘ 𝐺 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 78 |
74 77
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 79 |
71
|
con2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐷 → ¬ 𝑘 ∈ 𝐶 ) ) |
| 80 |
79
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ¬ 𝑘 ∈ 𝐶 ) |
| 81 |
80
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
| 82 |
46
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 83 |
81 82
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝐹 ‘ 𝑘 ) ) ) |
| 84 |
1 2 14
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 85 |
13 11 84
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 0g ‘ 𝐺 ) + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 86 |
85
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( ( 0g ‘ 𝐺 ) + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 87 |
83 86
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 88 |
10
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ ( 𝐶 ∪ 𝐷 ) ) ) |
| 89 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝐶 ∪ 𝐷 ) ↔ ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) |
| 90 |
88 89
|
bitrdi |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↔ ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) ) |
| 91 |
90
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) |
| 92 |
78 87 91
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 93 |
92
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 94 |
22 93
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) |
| 95 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) |
| 96 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) |
| 97 |
5 18 20 95 96
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) |
| 98 |
94 97
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) |
| 99 |
98
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐺 tsums ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , ( 0g ‘ 𝐺 ) ) ) ) ) ) |
| 100 |
61 99
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝐺 tsums 𝐹 ) ) |