Metamath Proof Explorer


Theorem tsmsxplem1

Description: Lemma for tsmsxp . (Contributed by Mario Carneiro, 21-Sep-2015)

Ref Expression
Hypotheses tsmsxp.b 𝐵 = ( Base ‘ 𝐺 )
tsmsxp.g ( 𝜑𝐺 ∈ CMnd )
tsmsxp.2 ( 𝜑𝐺 ∈ TopGrp )
tsmsxp.a ( 𝜑𝐴𝑉 )
tsmsxp.c ( 𝜑𝐶𝑊 )
tsmsxp.f ( 𝜑𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 )
tsmsxp.h ( 𝜑𝐻 : 𝐴𝐵 )
tsmsxp.1 ( ( 𝜑𝑗𝐴 ) → ( 𝐻𝑗 ) ∈ ( 𝐺 tsums ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) )
tsmsxp.j 𝐽 = ( TopOpen ‘ 𝐺 )
tsmsxp.z 0 = ( 0g𝐺 )
tsmsxp.p + = ( +g𝐺 )
tsmsxp.m = ( -g𝐺 )
tsmsxp.l ( 𝜑𝐿𝐽 )
tsmsxp.3 ( 𝜑0𝐿 )
tsmsxp.k ( 𝜑𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) )
tsmsxp.ks ( 𝜑 → dom 𝐷𝐾 )
tsmsxp.d ( 𝜑𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) )
Assertion tsmsxplem1 ( 𝜑 → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷𝑛 ∧ ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) )

Proof

Step Hyp Ref Expression
1 tsmsxp.b 𝐵 = ( Base ‘ 𝐺 )
2 tsmsxp.g ( 𝜑𝐺 ∈ CMnd )
3 tsmsxp.2 ( 𝜑𝐺 ∈ TopGrp )
4 tsmsxp.a ( 𝜑𝐴𝑉 )
5 tsmsxp.c ( 𝜑𝐶𝑊 )
6 tsmsxp.f ( 𝜑𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 )
7 tsmsxp.h ( 𝜑𝐻 : 𝐴𝐵 )
8 tsmsxp.1 ( ( 𝜑𝑗𝐴 ) → ( 𝐻𝑗 ) ∈ ( 𝐺 tsums ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) )
9 tsmsxp.j 𝐽 = ( TopOpen ‘ 𝐺 )
10 tsmsxp.z 0 = ( 0g𝐺 )
11 tsmsxp.p + = ( +g𝐺 )
12 tsmsxp.m = ( -g𝐺 )
13 tsmsxp.l ( 𝜑𝐿𝐽 )
14 tsmsxp.3 ( 𝜑0𝐿 )
15 tsmsxp.k ( 𝜑𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) )
16 tsmsxp.ks ( 𝜑 → dom 𝐷𝐾 )
17 tsmsxp.d ( 𝜑𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) )
18 15 elin2d ( 𝜑𝐾 ∈ Fin )
19 elfpw ( 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝐾𝐴𝐾 ∈ Fin ) )
20 19 simplbi ( 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝐾𝐴 )
21 15 20 syl ( 𝜑𝐾𝐴 )
22 21 sselda ( ( 𝜑𝑗𝐾 ) → 𝑗𝐴 )
23 eqid ( 𝒫 𝐶 ∩ Fin ) = ( 𝒫 𝐶 ∩ Fin )
24 2 adantr ( ( 𝜑𝑗𝐴 ) → 𝐺 ∈ CMnd )
25 tgptps ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp )
26 3 25 syl ( 𝜑𝐺 ∈ TopSp )
27 26 adantr ( ( 𝜑𝑗𝐴 ) → 𝐺 ∈ TopSp )
28 5 adantr ( ( 𝜑𝑗𝐴 ) → 𝐶𝑊 )
29 fovrn ( ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵𝑗𝐴𝑘𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
30 6 29 syl3an1 ( ( 𝜑𝑗𝐴𝑘𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
31 30 3expa ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
32 31 fmpttd ( ( 𝜑𝑗𝐴 ) → ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) : 𝐶𝐵 )
33 df-ima ( ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) “ 𝐿 ) = ran ( ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ↾ 𝐿 )
34 9 1 tgptopon ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝐵 ) )
35 3 34 syl ( 𝜑𝐽 ∈ ( TopOn ‘ 𝐵 ) )
36 toponss ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐿𝐽 ) → 𝐿𝐵 )
37 35 13 36 syl2anc ( 𝜑𝐿𝐵 )
38 37 adantr ( ( 𝜑𝑗𝐴 ) → 𝐿𝐵 )
39 38 resmptd ( ( 𝜑𝑗𝐴 ) → ( ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ↾ 𝐿 ) = ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) )
40 39 rneqd ( ( 𝜑𝑗𝐴 ) → ran ( ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ↾ 𝐿 ) = ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) )
41 33 40 syl5eq ( ( 𝜑𝑗𝐴 ) → ( ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) “ 𝐿 ) = ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) )
42 7 ffvelrnda ( ( 𝜑𝑗𝐴 ) → ( 𝐻𝑗 ) ∈ 𝐵 )
43 eqid ( invg𝐺 ) = ( invg𝐺 )
44 1 11 43 12 grpsubval ( ( ( 𝐻𝑗 ) ∈ 𝐵𝑔𝐵 ) → ( ( 𝐻𝑗 ) 𝑔 ) = ( ( 𝐻𝑗 ) + ( ( invg𝐺 ) ‘ 𝑔 ) ) )
45 42 44 sylan ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑔𝐵 ) → ( ( 𝐻𝑗 ) 𝑔 ) = ( ( 𝐻𝑗 ) + ( ( invg𝐺 ) ‘ 𝑔 ) ) )
46 45 mpteq2dva ( ( 𝜑𝑗𝐴 ) → ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) = ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) + ( ( invg𝐺 ) ‘ 𝑔 ) ) ) )
47 tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )
48 3 47 syl ( 𝜑𝐺 ∈ Grp )
49 48 adantr ( ( 𝜑𝑗𝐴 ) → 𝐺 ∈ Grp )
50 1 43 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑔𝐵 ) → ( ( invg𝐺 ) ‘ 𝑔 ) ∈ 𝐵 )
51 49 50 sylan ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑔𝐵 ) → ( ( invg𝐺 ) ‘ 𝑔 ) ∈ 𝐵 )
52 1 43 grpinvf ( 𝐺 ∈ Grp → ( invg𝐺 ) : 𝐵𝐵 )
53 49 52 syl ( ( 𝜑𝑗𝐴 ) → ( invg𝐺 ) : 𝐵𝐵 )
54 53 feqmptd ( ( 𝜑𝑗𝐴 ) → ( invg𝐺 ) = ( 𝑔𝐵 ↦ ( ( invg𝐺 ) ‘ 𝑔 ) ) )
55 eqidd ( ( 𝜑𝑗𝐴 ) → ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) = ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) )
56 oveq2 ( 𝑦 = ( ( invg𝐺 ) ‘ 𝑔 ) → ( ( 𝐻𝑗 ) + 𝑦 ) = ( ( 𝐻𝑗 ) + ( ( invg𝐺 ) ‘ 𝑔 ) ) )
57 51 54 55 56 fmptco ( ( 𝜑𝑗𝐴 ) → ( ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) ∘ ( invg𝐺 ) ) = ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) + ( ( invg𝐺 ) ‘ 𝑔 ) ) ) )
58 46 57 eqtr4d ( ( 𝜑𝑗𝐴 ) → ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) = ( ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) ∘ ( invg𝐺 ) ) )
59 3 adantr ( ( 𝜑𝑗𝐴 ) → 𝐺 ∈ TopGrp )
60 9 43 grpinvhmeo ( 𝐺 ∈ TopGrp → ( invg𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) )
61 59 60 syl ( ( 𝜑𝑗𝐴 ) → ( invg𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) )
62 eqid ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) = ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) )
63 62 1 11 9 tgplacthmeo ( ( 𝐺 ∈ TopGrp ∧ ( 𝐻𝑗 ) ∈ 𝐵 ) → ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
64 59 42 63 syl2anc ( ( 𝜑𝑗𝐴 ) → ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
65 hmeoco ( ( ( invg𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) → ( ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) ∘ ( invg𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
66 61 64 65 syl2anc ( ( 𝜑𝑗𝐴 ) → ( ( 𝑦𝐵 ↦ ( ( 𝐻𝑗 ) + 𝑦 ) ) ∘ ( invg𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
67 58 66 eqeltrd ( ( 𝜑𝑗𝐴 ) → ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
68 13 adantr ( ( 𝜑𝑗𝐴 ) → 𝐿𝐽 )
69 hmeoima ( ( ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ 𝐿𝐽 ) → ( ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) “ 𝐿 ) ∈ 𝐽 )
70 67 68 69 syl2anc ( ( 𝜑𝑗𝐴 ) → ( ( 𝑔𝐵 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) “ 𝐿 ) ∈ 𝐽 )
71 41 70 eqeltrrd ( ( 𝜑𝑗𝐴 ) → ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ∈ 𝐽 )
72 1 10 12 grpsubid1 ( ( 𝐺 ∈ Grp ∧ ( 𝐻𝑗 ) ∈ 𝐵 ) → ( ( 𝐻𝑗 ) 0 ) = ( 𝐻𝑗 ) )
73 49 42 72 syl2anc ( ( 𝜑𝑗𝐴 ) → ( ( 𝐻𝑗 ) 0 ) = ( 𝐻𝑗 ) )
74 14 adantr ( ( 𝜑𝑗𝐴 ) → 0𝐿 )
75 ovex ( ( 𝐻𝑗 ) 0 ) ∈ V
76 eqid ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) = ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) )
77 oveq2 ( 𝑔 = 0 → ( ( 𝐻𝑗 ) 𝑔 ) = ( ( 𝐻𝑗 ) 0 ) )
78 76 77 elrnmpt1s ( ( 0𝐿 ∧ ( ( 𝐻𝑗 ) 0 ) ∈ V ) → ( ( 𝐻𝑗 ) 0 ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) )
79 74 75 78 sylancl ( ( 𝜑𝑗𝐴 ) → ( ( 𝐻𝑗 ) 0 ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) )
80 73 79 eqeltrrd ( ( 𝜑𝑗𝐴 ) → ( 𝐻𝑗 ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) )
81 1 9 23 24 27 28 32 8 71 80 tsmsi ( ( 𝜑𝑗𝐴 ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
82 22 81 syldan ( ( 𝜑𝑗𝐾 ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
83 82 ralrimiva ( 𝜑 → ∀ 𝑗𝐾𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
84 sseq1 ( 𝑦 = ( 𝑓𝑗 ) → ( 𝑦𝑧 ↔ ( 𝑓𝑗 ) ⊆ 𝑧 ) )
85 84 imbi1d ( 𝑦 = ( 𝑓𝑗 ) → ( ( 𝑦𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ↔ ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) )
86 85 ralbidv ( 𝑦 = ( 𝑓𝑗 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) )
87 86 ac6sfi ( ( 𝐾 ∈ Fin ∧ ∀ 𝑗𝐾𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗𝐾𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) )
88 18 83 87 syl2anc ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗𝐾𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) )
89 frn ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝐶 ∩ Fin ) )
90 89 adantl ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ ( 𝒫 𝐶 ∩ Fin ) )
91 inss1 ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝒫 𝐶
92 90 91 sstrdi ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ 𝒫 𝐶 )
93 sspwuni ( ran 𝑓 ⊆ 𝒫 𝐶 ran 𝑓𝐶 )
94 92 93 sylib ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓𝐶 )
95 elfpw ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) ↔ ( 𝐷 ⊆ ( 𝐴 × 𝐶 ) ∧ 𝐷 ∈ Fin ) )
96 95 simplbi ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) → 𝐷 ⊆ ( 𝐴 × 𝐶 ) )
97 rnss ( 𝐷 ⊆ ( 𝐴 × 𝐶 ) → ran 𝐷 ⊆ ran ( 𝐴 × 𝐶 ) )
98 17 96 97 3syl ( 𝜑 → ran 𝐷 ⊆ ran ( 𝐴 × 𝐶 ) )
99 rnxpss ran ( 𝐴 × 𝐶 ) ⊆ 𝐶
100 98 99 sstrdi ( 𝜑 → ran 𝐷𝐶 )
101 100 adantr ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐷𝐶 )
102 94 101 unssd ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 )
103 18 adantr ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐾 ∈ Fin )
104 ffn ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) → 𝑓 Fn 𝐾 )
105 104 adantl ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑓 Fn 𝐾 )
106 dffn4 ( 𝑓 Fn 𝐾𝑓 : 𝐾onto→ ran 𝑓 )
107 105 106 sylib ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑓 : 𝐾onto→ ran 𝑓 )
108 fofi ( ( 𝐾 ∈ Fin ∧ 𝑓 : 𝐾onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin )
109 103 107 108 syl2anc ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ∈ Fin )
110 inss2 ( 𝒫 𝐶 ∩ Fin ) ⊆ Fin
111 90 110 sstrdi ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ Fin )
112 unifi ( ( ran 𝑓 ∈ Fin ∧ ran 𝑓 ⊆ Fin ) → ran 𝑓 ∈ Fin )
113 109 111 112 syl2anc ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ∈ Fin )
114 elinel2 ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) → 𝐷 ∈ Fin )
115 rnfi ( 𝐷 ∈ Fin → ran 𝐷 ∈ Fin )
116 17 114 115 3syl ( 𝜑 → ran 𝐷 ∈ Fin )
117 116 adantr ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐷 ∈ Fin )
118 unfi ( ( ran 𝑓 ∈ Fin ∧ ran 𝐷 ∈ Fin ) → ( ran 𝑓 ∪ ran 𝐷 ) ∈ Fin )
119 113 117 118 syl2anc ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ran 𝑓 ∪ ran 𝐷 ) ∈ Fin )
120 elfpw ( ( ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( ( ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ∧ ( ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) )
121 102 119 120 sylanbrc ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) )
122 121 adantrr ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗𝐾𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) ) → ( ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) )
123 ssun2 ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷 )
124 123 a1i ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗𝐾𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) ) → ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷 ) )
125 121 adantlr ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) )
126 fvssunirn ( 𝑓𝑗 ) ⊆ ran 𝑓
127 ssun1 ran 𝑓 ⊆ ( ran 𝑓 ∪ ran 𝐷 )
128 126 127 sstri ( 𝑓𝑗 ) ⊆ ( ran 𝑓 ∪ ran 𝐷 )
129 id ( 𝑧 = ( ran 𝑓 ∪ ran 𝐷 ) → 𝑧 = ( ran 𝑓 ∪ ran 𝐷 ) )
130 128 129 sseqtrrid ( 𝑧 = ( ran 𝑓 ∪ ran 𝐷 ) → ( 𝑓𝑗 ) ⊆ 𝑧 )
131 pm5.5 ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
132 130 131 syl ( 𝑧 = ( ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
133 reseq2 ( 𝑧 = ( ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) = ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) )
134 133 oveq2d ( 𝑧 = ( ran 𝑓 ∪ ran 𝐷 ) → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) = ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) ) )
135 134 eleq1d ( 𝑧 = ( ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ↔ ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
136 132 135 bitrd ( 𝑧 = ( ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
137 136 rspcv ( ( ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
138 125 137 syl ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
139 2 ad2antrr ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ CMnd )
140 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
141 139 140 syl ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ Mnd )
142 simplr ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑗𝐾 )
143 119 adantlr ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ran 𝑓 ∪ ran 𝐷 ) ∈ Fin )
144 102 adantlr ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 )
145 144 sselda ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ) → 𝑘𝐶 )
146 6 adantr ( ( 𝜑𝑗𝐾 ) → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 )
147 146 22 jca ( ( 𝜑𝑗𝐾 ) → ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵𝑗𝐴 ) )
148 29 3expa ( ( ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵𝑗𝐴 ) ∧ 𝑘𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
149 147 148 sylan ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑘𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
150 149 adantlr ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
151 145 150 syldan ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
152 151 fmpttd ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( ran 𝑓 ∪ ran 𝐷 ) ⟶ 𝐵 )
153 eqid ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) )
154 ovexd ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ V )
155 10 fvexi 0 ∈ V
156 155 a1i ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 0 ∈ V )
157 153 143 154 156 fsuppmptdm ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 )
158 1 10 139 143 152 157 gsumcl ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 )
159 velsn ( 𝑦 ∈ { 𝑗 } ↔ 𝑦 = 𝑗 )
160 ovres ( ( 𝑦 ∈ { 𝑗 } ∧ 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑦 𝐹 𝑘 ) )
161 159 160 sylanbr ( ( 𝑦 = 𝑗𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑦 𝐹 𝑘 ) )
162 oveq1 ( 𝑦 = 𝑗 → ( 𝑦 𝐹 𝑘 ) = ( 𝑗 𝐹 𝑘 ) )
163 162 adantr ( ( 𝑦 = 𝑗𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 𝐹 𝑘 ) = ( 𝑗 𝐹 𝑘 ) )
164 161 163 eqtrd ( ( 𝑦 = 𝑗𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑗 𝐹 𝑘 ) )
165 164 mpteq2dva ( 𝑦 = 𝑗 → ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) = ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) )
166 165 oveq2d ( 𝑦 = 𝑗 → ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) )
167 1 166 gsumsn ( ( 𝐺 ∈ Mnd ∧ 𝑗𝐾 ∧ ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) )
168 141 142 158 167 syl3anc ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) )
169 snfi { 𝑗 } ∈ Fin
170 169 a1i ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝑗 } ∈ Fin )
171 6 ad2antrr ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 )
172 22 adantr ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑗𝐴 )
173 172 snssd ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝑗 } ⊆ 𝐴 )
174 xpss12 ( ( { 𝑗 } ⊆ 𝐴 ∧ ( ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) → ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ⊆ ( 𝐴 × 𝐶 ) )
175 173 144 174 syl2anc ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ⊆ ( 𝐴 × 𝐶 ) )
176 171 175 fssresd ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) : ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ⟶ 𝐵 )
177 xpfi ( ( { 𝑗 } ∈ Fin ∧ ( ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) → ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ∈ Fin )
178 169 143 177 sylancr ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ∈ Fin )
179 176 178 156 fdmfifsupp ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) finSupp 0 )
180 1 10 139 170 143 176 179 gsumxp ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) )
181 144 resmptd ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) = ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) )
182 181 oveq2d ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) )
183 168 180 182 3eqtr4rd ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) )
184 183 eleq1d ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) )
185 ovex ( ( 𝐻𝑗 ) 𝑔 ) ∈ V
186 76 185 elrnmpti ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ↔ ∃ 𝑔𝐿 ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻𝑗 ) 𝑔 ) )
187 isabl ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) )
188 48 2 187 sylanbrc ( 𝜑𝐺 ∈ Abel )
189 188 ad3antrrr ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔𝐿 ) → 𝐺 ∈ Abel )
190 22 42 syldan ( ( 𝜑𝑗𝐾 ) → ( 𝐻𝑗 ) ∈ 𝐵 )
191 190 ad2antrr ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔𝐿 ) → ( 𝐻𝑗 ) ∈ 𝐵 )
192 37 ad2antrr ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐿𝐵 )
193 192 sselda ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔𝐿 ) → 𝑔𝐵 )
194 1 12 189 191 193 ablnncan ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔𝐿 ) → ( ( 𝐻𝑗 ) ( ( 𝐻𝑗 ) 𝑔 ) ) = 𝑔 )
195 simpr ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔𝐿 ) → 𝑔𝐿 )
196 194 195 eqeltrd ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔𝐿 ) → ( ( 𝐻𝑗 ) ( ( 𝐻𝑗 ) 𝑔 ) ) ∈ 𝐿 )
197 oveq2 ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻𝑗 ) 𝑔 ) → ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) = ( ( 𝐻𝑗 ) ( ( 𝐻𝑗 ) 𝑔 ) ) )
198 197 eleq1d ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻𝑗 ) 𝑔 ) → ( ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻𝑗 ) ( ( 𝐻𝑗 ) 𝑔 ) ) ∈ 𝐿 ) )
199 196 198 syl5ibrcom ( ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔𝐿 ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻𝑗 ) 𝑔 ) → ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
200 199 rexlimdva ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∃ 𝑔𝐿 ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻𝑗 ) 𝑔 ) → ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
201 186 200 syl5bi ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) → ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
202 184 201 sylbid ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) → ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
203 138 202 syld ( ( ( 𝜑𝑗𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) → ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
204 203 an32s ( ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑗𝐾 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) → ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
205 204 ralimdva ( ( 𝜑𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑗𝐾𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) → ∀ 𝑗𝐾 ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
206 205 impr ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗𝐾𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) ) → ∀ 𝑗𝐾 ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 )
207 fveq2 ( 𝑗 = 𝑥 → ( 𝐻𝑗 ) = ( 𝐻𝑥 ) )
208 sneq ( 𝑗 = 𝑥 → { 𝑗 } = { 𝑥 } )
209 208 xpeq1d ( 𝑗 = 𝑥 → ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) = ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) )
210 209 reseq2d ( 𝑗 = 𝑥 → ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) )
211 210 oveq2d ( 𝑗 = 𝑥 → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) )
212 207 211 oveq12d ( 𝑗 = 𝑥 → ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) = ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) )
213 212 eleq1d ( 𝑗 = 𝑥 → ( ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
214 213 cbvralvw ( ∀ 𝑗𝐾 ( ( 𝐻𝑗 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 )
215 206 214 sylib ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗𝐾𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) ) → ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 )
216 sseq2 ( 𝑛 = ( ran 𝑓 ∪ ran 𝐷 ) → ( ran 𝐷𝑛 ↔ ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷 ) ) )
217 xpeq2 ( 𝑛 = ( ran 𝑓 ∪ ran 𝐷 ) → ( { 𝑥 } × 𝑛 ) = ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) )
218 217 reseq2d ( 𝑛 = ( ran 𝑓 ∪ ran 𝐷 ) → ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) = ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) )
219 218 oveq2d ( 𝑛 = ( ran 𝑓 ∪ ran 𝐷 ) → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) )
220 219 oveq2d ( 𝑛 = ( ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) = ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) )
221 220 eleq1d ( 𝑛 = ( ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
222 221 ralbidv ( 𝑛 = ( ran 𝑓 ∪ ran 𝐷 ) → ( ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ↔ ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) )
223 216 222 anbi12d ( 𝑛 = ( ran 𝑓 ∪ ran 𝐷 ) → ( ( ran 𝐷𝑛 ∧ ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ↔ ( ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷 ) ∧ ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) )
224 223 rspcev ( ( ( ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ ( ran 𝐷 ⊆ ( ran 𝑓 ∪ ran 𝐷 ) ∧ ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷𝑛 ∧ ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) )
225 122 124 215 224 syl12anc ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗𝐾𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔𝐿 ↦ ( ( 𝐻𝑗 ) 𝑔 ) ) ) ) ) → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷𝑛 ∧ ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) )
226 88 225 exlimddv ( 𝜑 → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷𝑛 ∧ ∀ 𝑥𝐾 ( ( 𝐻𝑥 ) ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) )