| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsmsxp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
tsmsxp.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 3 |
|
tsmsxp.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) |
| 4 |
|
tsmsxp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
tsmsxp.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
| 6 |
|
tsmsxp.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
| 7 |
|
tsmsxp.h |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 8 |
|
tsmsxp.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐺 tsums ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 9 |
|
tsmsxp.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 10 |
|
tsmsxp.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 11 |
|
tsmsxp.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 12 |
|
tsmsxp.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 13 |
|
tsmsxp.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝐽 ) |
| 14 |
|
tsmsxp.3 |
⊢ ( 𝜑 → 0 ∈ 𝐿 ) |
| 15 |
|
tsmsxp.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 16 |
|
tsmsxp.ks |
⊢ ( 𝜑 → dom 𝐷 ⊆ 𝐾 ) |
| 17 |
|
tsmsxp.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) ) |
| 18 |
15
|
elin2d |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
| 19 |
|
elfpw |
⊢ ( 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝐾 ⊆ 𝐴 ∧ 𝐾 ∈ Fin ) ) |
| 20 |
19
|
simplbi |
⊢ ( 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝐾 ⊆ 𝐴 ) |
| 21 |
15 20
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝐴 ) |
| 22 |
21
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → 𝑗 ∈ 𝐴 ) |
| 23 |
|
eqid |
⊢ ( 𝒫 𝐶 ∩ Fin ) = ( 𝒫 𝐶 ∩ Fin ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ CMnd ) |
| 25 |
|
tgptps |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) |
| 26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ TopSp ) |
| 28 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) |
| 29 |
|
fovcdm |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 30 |
6 29
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 31 |
30
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 32 |
31
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) : 𝐶 ⟶ 𝐵 ) |
| 33 |
|
df-ima |
⊢ ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) = ran ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↾ 𝐿 ) |
| 34 |
9 1
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 35 |
3 34
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 36 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐿 ∈ 𝐽 ) → 𝐿 ⊆ 𝐵 ) |
| 37 |
35 13 36
|
syl2anc |
⊢ ( 𝜑 → 𝐿 ⊆ 𝐵 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐿 ⊆ 𝐵 ) |
| 39 |
38
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↾ 𝐿 ) = ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 40 |
39
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↾ 𝐿 ) = ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 41 |
33 40
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) = ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 42 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) |
| 43 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 44 |
1 11 43 12
|
grpsubval |
⊢ ( ( ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) = ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
| 45 |
42 44
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) = ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
| 46 |
45
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
| 47 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| 48 |
3 47
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ Grp ) |
| 50 |
1 43
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ∈ 𝐵 ) |
| 51 |
49 50
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ∈ 𝐵 ) |
| 52 |
1 43
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 53 |
49 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 54 |
53
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( invg ‘ 𝐺 ) = ( 𝑔 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
| 55 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ) |
| 56 |
|
oveq2 |
⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) = ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
| 57 |
51 54 55 56
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) = ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
| 58 |
46 57
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) ) |
| 59 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ TopGrp ) |
| 60 |
9 43
|
grpinvhmeo |
⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 62 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) |
| 63 |
62 1 11 9
|
tgplacthmeo |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 64 |
59 42 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 65 |
|
hmeoco |
⊢ ( ( ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) → ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 66 |
61 64 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 67 |
58 66
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 68 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐿 ∈ 𝐽 ) |
| 69 |
|
hmeoima |
⊢ ( ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ 𝐿 ∈ 𝐽 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) ∈ 𝐽 ) |
| 70 |
67 68 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) ∈ 𝐽 ) |
| 71 |
41 70
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ 𝐽 ) |
| 72 |
1 10 12
|
grpsubid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) = ( 𝐻 ‘ 𝑗 ) ) |
| 73 |
49 42 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) = ( 𝐻 ‘ 𝑗 ) ) |
| 74 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 ∈ 𝐿 ) |
| 75 |
|
ovex |
⊢ ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ V |
| 76 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) |
| 77 |
|
oveq2 |
⊢ ( 𝑔 = 0 → ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) = ( ( 𝐻 ‘ 𝑗 ) − 0 ) ) |
| 78 |
76 77
|
elrnmpt1s |
⊢ ( ( 0 ∈ 𝐿 ∧ ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ V ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 79 |
74 75 78
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 80 |
73 79
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 81 |
1 9 23 24 27 28 32 8 71 80
|
tsmsi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 82 |
22 81
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 83 |
82
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐾 ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 84 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑗 ) → ( 𝑦 ⊆ 𝑧 ↔ ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 ) ) |
| 85 |
84
|
imbi1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑗 ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
| 86 |
85
|
ralbidv |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑗 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
| 87 |
86
|
ac6sfi |
⊢ ( ( 𝐾 ∈ Fin ∧ ∀ 𝑗 ∈ 𝐾 ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
| 88 |
18 83 87
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
| 89 |
|
frn |
⊢ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝐶 ∩ Fin ) ) |
| 90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ ( 𝒫 𝐶 ∩ Fin ) ) |
| 91 |
|
inss1 |
⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝒫 𝐶 |
| 92 |
90 91
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ 𝒫 𝐶 ) |
| 93 |
|
sspwuni |
⊢ ( ran 𝑓 ⊆ 𝒫 𝐶 ↔ ∪ ran 𝑓 ⊆ 𝐶 ) |
| 94 |
92 93
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ∪ ran 𝑓 ⊆ 𝐶 ) |
| 95 |
|
elfpw |
⊢ ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) ↔ ( 𝐷 ⊆ ( 𝐴 × 𝐶 ) ∧ 𝐷 ∈ Fin ) ) |
| 96 |
95
|
simplbi |
⊢ ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) → 𝐷 ⊆ ( 𝐴 × 𝐶 ) ) |
| 97 |
|
rnss |
⊢ ( 𝐷 ⊆ ( 𝐴 × 𝐶 ) → ran 𝐷 ⊆ ran ( 𝐴 × 𝐶 ) ) |
| 98 |
17 96 97
|
3syl |
⊢ ( 𝜑 → ran 𝐷 ⊆ ran ( 𝐴 × 𝐶 ) ) |
| 99 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐶 ) ⊆ 𝐶 |
| 100 |
98 99
|
sstrdi |
⊢ ( 𝜑 → ran 𝐷 ⊆ 𝐶 ) |
| 101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐷 ⊆ 𝐶 ) |
| 102 |
94 101
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) |
| 103 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐾 ∈ Fin ) |
| 104 |
|
ffn |
⊢ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) → 𝑓 Fn 𝐾 ) |
| 105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑓 Fn 𝐾 ) |
| 106 |
|
dffn4 |
⊢ ( 𝑓 Fn 𝐾 ↔ 𝑓 : 𝐾 –onto→ ran 𝑓 ) |
| 107 |
105 106
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑓 : 𝐾 –onto→ ran 𝑓 ) |
| 108 |
|
fofi |
⊢ ( ( 𝐾 ∈ Fin ∧ 𝑓 : 𝐾 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) |
| 109 |
103 107 108
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ∈ Fin ) |
| 110 |
|
inss2 |
⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ Fin |
| 111 |
90 110
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ Fin ) |
| 112 |
|
unifi |
⊢ ( ( ran 𝑓 ∈ Fin ∧ ran 𝑓 ⊆ Fin ) → ∪ ran 𝑓 ∈ Fin ) |
| 113 |
109 111 112
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ∪ ran 𝑓 ∈ Fin ) |
| 114 |
|
elinel2 |
⊢ ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) → 𝐷 ∈ Fin ) |
| 115 |
|
rnfi |
⊢ ( 𝐷 ∈ Fin → ran 𝐷 ∈ Fin ) |
| 116 |
17 114 115
|
3syl |
⊢ ( 𝜑 → ran 𝐷 ∈ Fin ) |
| 117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐷 ∈ Fin ) |
| 118 |
|
unfi |
⊢ ( ( ∪ ran 𝑓 ∈ Fin ∧ ran 𝐷 ∈ Fin ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) |
| 119 |
113 117 118
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) |
| 120 |
|
elfpw |
⊢ ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ∧ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) ) |
| 121 |
102 119 120
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
| 122 |
121
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
| 123 |
|
ssun2 |
⊢ ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) |
| 124 |
123
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) |
| 125 |
121
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
| 126 |
|
fvssunirn |
⊢ ( 𝑓 ‘ 𝑗 ) ⊆ ∪ ran 𝑓 |
| 127 |
|
ssun1 |
⊢ ∪ ran 𝑓 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) |
| 128 |
126 127
|
sstri |
⊢ ( 𝑓 ‘ 𝑗 ) ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) |
| 129 |
|
id |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) |
| 130 |
128 129
|
sseqtrrid |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 ) |
| 131 |
|
pm5.5 |
⊢ ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 132 |
130 131
|
syl |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 133 |
|
reseq2 |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) = ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) |
| 134 |
133
|
oveq2d |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) |
| 135 |
134
|
eleq1d |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 136 |
132 135
|
bitrd |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 137 |
136
|
rspcv |
⊢ ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 138 |
125 137
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 139 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 140 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 141 |
139 140
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ Mnd ) |
| 142 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑗 ∈ 𝐾 ) |
| 143 |
119
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) |
| 144 |
102
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) |
| 145 |
144
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → 𝑘 ∈ 𝐶 ) |
| 146 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
| 147 |
146 22
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ) |
| 148 |
29
|
3expa |
⊢ ( ( ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 149 |
147 148
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 150 |
149
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 151 |
145 150
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 152 |
151
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⟶ 𝐵 ) |
| 153 |
|
eqid |
⊢ ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) |
| 154 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ V ) |
| 155 |
10
|
fvexi |
⊢ 0 ∈ V |
| 156 |
155
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 0 ∈ V ) |
| 157 |
153 143 154 156
|
fsuppmptdm |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ) |
| 158 |
1 10 139 143 152 157
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 159 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑗 } ↔ 𝑦 = 𝑗 ) |
| 160 |
|
ovres |
⊢ ( ( 𝑦 ∈ { 𝑗 } ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑦 𝐹 𝑘 ) ) |
| 161 |
159 160
|
sylanbr |
⊢ ( ( 𝑦 = 𝑗 ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑦 𝐹 𝑘 ) ) |
| 162 |
|
oveq1 |
⊢ ( 𝑦 = 𝑗 → ( 𝑦 𝐹 𝑘 ) = ( 𝑗 𝐹 𝑘 ) ) |
| 163 |
162
|
adantr |
⊢ ( ( 𝑦 = 𝑗 ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 𝐹 𝑘 ) = ( 𝑗 𝐹 𝑘 ) ) |
| 164 |
161 163
|
eqtrd |
⊢ ( ( 𝑦 = 𝑗 ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑗 𝐹 𝑘 ) ) |
| 165 |
164
|
mpteq2dva |
⊢ ( 𝑦 = 𝑗 → ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) = ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
| 166 |
165
|
oveq2d |
⊢ ( 𝑦 = 𝑗 → ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 167 |
1 166
|
gsumsn |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑗 ∈ 𝐾 ∧ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 168 |
141 142 158 167
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 169 |
|
snfi |
⊢ { 𝑗 } ∈ Fin |
| 170 |
169
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝑗 } ∈ Fin ) |
| 171 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
| 172 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑗 ∈ 𝐴 ) |
| 173 |
172
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝑗 } ⊆ 𝐴 ) |
| 174 |
|
xpss12 |
⊢ ( ( { 𝑗 } ⊆ 𝐴 ∧ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ⊆ ( 𝐴 × 𝐶 ) ) |
| 175 |
173 144 174
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ⊆ ( 𝐴 × 𝐶 ) ) |
| 176 |
171 175
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) : ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ⟶ 𝐵 ) |
| 177 |
|
xpfi |
⊢ ( ( { 𝑗 } ∈ Fin ∧ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ∈ Fin ) |
| 178 |
169 143 177
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ∈ Fin ) |
| 179 |
176 178 156
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) finSupp 0 ) |
| 180 |
1 10 139 170 143 176 179
|
gsumxp |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) ) |
| 181 |
144
|
resmptd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) = ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
| 182 |
181
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 183 |
168 180 182
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) |
| 184 |
183
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
| 185 |
|
ovex |
⊢ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ∈ V |
| 186 |
76 185
|
elrnmpti |
⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↔ ∃ 𝑔 ∈ 𝐿 ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) |
| 187 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
| 188 |
48 2 187
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 189 |
188
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → 𝐺 ∈ Abel ) |
| 190 |
22 42
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) |
| 191 |
190
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) |
| 192 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐿 ⊆ 𝐵 ) |
| 193 |
192
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ∈ 𝐵 ) |
| 194 |
1 12 189 191 193
|
ablnncan |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = 𝑔 ) |
| 195 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ∈ 𝐿 ) |
| 196 |
194 195
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ 𝐿 ) |
| 197 |
|
oveq2 |
⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
| 198 |
197
|
eleq1d |
⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ 𝐿 ) ) |
| 199 |
196 198
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 200 |
199
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∃ 𝑔 ∈ 𝐿 ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 201 |
186 200
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 202 |
184 201
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 203 |
138 202
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 204 |
203
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑗 ∈ 𝐾 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 205 |
204
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ∀ 𝑗 ∈ 𝐾 ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 206 |
205
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ∀ 𝑗 ∈ 𝐾 ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) |
| 207 |
|
fveq2 |
⊢ ( 𝑗 = 𝑥 → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 𝑥 ) ) |
| 208 |
|
sneq |
⊢ ( 𝑗 = 𝑥 → { 𝑗 } = { 𝑥 } ) |
| 209 |
208
|
xpeq1d |
⊢ ( 𝑗 = 𝑥 → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) = ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) |
| 210 |
209
|
reseq2d |
⊢ ( 𝑗 = 𝑥 → ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) |
| 211 |
210
|
oveq2d |
⊢ ( 𝑗 = 𝑥 → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) |
| 212 |
207 211
|
oveq12d |
⊢ ( 𝑗 = 𝑥 → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) = ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ) |
| 213 |
212
|
eleq1d |
⊢ ( 𝑗 = 𝑥 → ( ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 214 |
213
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ 𝐾 ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) |
| 215 |
206 214
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) |
| 216 |
|
sseq2 |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ran 𝐷 ⊆ 𝑛 ↔ ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) |
| 217 |
|
xpeq2 |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( { 𝑥 } × 𝑛 ) = ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) |
| 218 |
217
|
reseq2d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) = ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) |
| 219 |
218
|
oveq2d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) |
| 220 |
219
|
oveq2d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) = ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ) |
| 221 |
220
|
eleq1d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 222 |
221
|
ralbidv |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
| 223 |
216 222
|
anbi12d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ↔ ( ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) ) |
| 224 |
223
|
rspcev |
⊢ ( ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ ( ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |
| 225 |
122 124 215 224
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |
| 226 |
88 225
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |