Metamath Proof Explorer


Theorem tsmsxplem1

Description: Lemma for tsmsxp . (Contributed by Mario Carneiro, 21-Sep-2015)

Ref Expression
Hypotheses tsmsxp.b B = Base G
tsmsxp.g φ G CMnd
tsmsxp.2 φ G TopGrp
tsmsxp.a φ A V
tsmsxp.c φ C W
tsmsxp.f φ F : A × C B
tsmsxp.h φ H : A B
tsmsxp.1 φ j A H j G tsums k C j F k
tsmsxp.j J = TopOpen G
tsmsxp.z 0 ˙ = 0 G
tsmsxp.p + ˙ = + G
tsmsxp.m - ˙ = - G
tsmsxp.l φ L J
tsmsxp.3 φ 0 ˙ L
tsmsxp.k φ K 𝒫 A Fin
tsmsxp.ks φ dom D K
tsmsxp.d φ D 𝒫 A × C Fin
Assertion tsmsxplem1 φ n 𝒫 C Fin ran D n x K H x - ˙ G F x × n L

Proof

Step Hyp Ref Expression
1 tsmsxp.b B = Base G
2 tsmsxp.g φ G CMnd
3 tsmsxp.2 φ G TopGrp
4 tsmsxp.a φ A V
5 tsmsxp.c φ C W
6 tsmsxp.f φ F : A × C B
7 tsmsxp.h φ H : A B
8 tsmsxp.1 φ j A H j G tsums k C j F k
9 tsmsxp.j J = TopOpen G
10 tsmsxp.z 0 ˙ = 0 G
11 tsmsxp.p + ˙ = + G
12 tsmsxp.m - ˙ = - G
13 tsmsxp.l φ L J
14 tsmsxp.3 φ 0 ˙ L
15 tsmsxp.k φ K 𝒫 A Fin
16 tsmsxp.ks φ dom D K
17 tsmsxp.d φ D 𝒫 A × C Fin
18 15 elin2d φ K Fin
19 elfpw K 𝒫 A Fin K A K Fin
20 19 simplbi K 𝒫 A Fin K A
21 15 20 syl φ K A
22 21 sselda φ j K j A
23 eqid 𝒫 C Fin = 𝒫 C Fin
24 2 adantr φ j A G CMnd
25 tgptps G TopGrp G TopSp
26 3 25 syl φ G TopSp
27 26 adantr φ j A G TopSp
28 5 adantr φ j A C W
29 fovrn F : A × C B j A k C j F k B
30 6 29 syl3an1 φ j A k C j F k B
31 30 3expa φ j A k C j F k B
32 31 fmpttd φ j A k C j F k : C B
33 df-ima g B H j - ˙ g L = ran g B H j - ˙ g L
34 9 1 tgptopon G TopGrp J TopOn B
35 3 34 syl φ J TopOn B
36 toponss J TopOn B L J L B
37 35 13 36 syl2anc φ L B
38 37 adantr φ j A L B
39 38 resmptd φ j A g B H j - ˙ g L = g L H j - ˙ g
40 39 rneqd φ j A ran g B H j - ˙ g L = ran g L H j - ˙ g
41 33 40 eqtrid φ j A g B H j - ˙ g L = ran g L H j - ˙ g
42 7 ffvelrnda φ j A H j B
43 eqid inv g G = inv g G
44 1 11 43 12 grpsubval H j B g B H j - ˙ g = H j + ˙ inv g G g
45 42 44 sylan φ j A g B H j - ˙ g = H j + ˙ inv g G g
46 45 mpteq2dva φ j A g B H j - ˙ g = g B H j + ˙ inv g G g
47 tgpgrp G TopGrp G Grp
48 3 47 syl φ G Grp
49 48 adantr φ j A G Grp
50 1 43 grpinvcl G Grp g B inv g G g B
51 49 50 sylan φ j A g B inv g G g B
52 1 43 grpinvf G Grp inv g G : B B
53 49 52 syl φ j A inv g G : B B
54 53 feqmptd φ j A inv g G = g B inv g G g
55 eqidd φ j A y B H j + ˙ y = y B H j + ˙ y
56 oveq2 y = inv g G g H j + ˙ y = H j + ˙ inv g G g
57 51 54 55 56 fmptco φ j A y B H j + ˙ y inv g G = g B H j + ˙ inv g G g
58 46 57 eqtr4d φ j A g B H j - ˙ g = y B H j + ˙ y inv g G
59 3 adantr φ j A G TopGrp
60 9 43 grpinvhmeo G TopGrp inv g G J Homeo J
61 59 60 syl φ j A inv g G J Homeo J
62 eqid y B H j + ˙ y = y B H j + ˙ y
63 62 1 11 9 tgplacthmeo G TopGrp H j B y B H j + ˙ y J Homeo J
64 59 42 63 syl2anc φ j A y B H j + ˙ y J Homeo J
65 hmeoco inv g G J Homeo J y B H j + ˙ y J Homeo J y B H j + ˙ y inv g G J Homeo J
66 61 64 65 syl2anc φ j A y B H j + ˙ y inv g G J Homeo J
67 58 66 eqeltrd φ j A g B H j - ˙ g J Homeo J
68 13 adantr φ j A L J
69 hmeoima g B H j - ˙ g J Homeo J L J g B H j - ˙ g L J
70 67 68 69 syl2anc φ j A g B H j - ˙ g L J
71 41 70 eqeltrrd φ j A ran g L H j - ˙ g J
72 1 10 12 grpsubid1 G Grp H j B H j - ˙ 0 ˙ = H j
73 49 42 72 syl2anc φ j A H j - ˙ 0 ˙ = H j
74 14 adantr φ j A 0 ˙ L
75 ovex H j - ˙ 0 ˙ V
76 eqid g L H j - ˙ g = g L H j - ˙ g
77 oveq2 g = 0 ˙ H j - ˙ g = H j - ˙ 0 ˙
78 76 77 elrnmpt1s 0 ˙ L H j - ˙ 0 ˙ V H j - ˙ 0 ˙ ran g L H j - ˙ g
79 74 75 78 sylancl φ j A H j - ˙ 0 ˙ ran g L H j - ˙ g
80 73 79 eqeltrrd φ j A H j ran g L H j - ˙ g
81 1 9 23 24 27 28 32 8 71 80 tsmsi φ j A y 𝒫 C Fin z 𝒫 C Fin y z G k C j F k z ran g L H j - ˙ g
82 22 81 syldan φ j K y 𝒫 C Fin z 𝒫 C Fin y z G k C j F k z ran g L H j - ˙ g
83 82 ralrimiva φ j K y 𝒫 C Fin z 𝒫 C Fin y z G k C j F k z ran g L H j - ˙ g
84 sseq1 y = f j y z f j z
85 84 imbi1d y = f j y z G k C j F k z ran g L H j - ˙ g f j z G k C j F k z ran g L H j - ˙ g
86 85 ralbidv y = f j z 𝒫 C Fin y z G k C j F k z ran g L H j - ˙ g z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g
87 86 ac6sfi K Fin j K y 𝒫 C Fin z 𝒫 C Fin y z G k C j F k z ran g L H j - ˙ g f f : K 𝒫 C Fin j K z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g
88 18 83 87 syl2anc φ f f : K 𝒫 C Fin j K z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g
89 frn f : K 𝒫 C Fin ran f 𝒫 C Fin
90 89 adantl φ f : K 𝒫 C Fin ran f 𝒫 C Fin
91 inss1 𝒫 C Fin 𝒫 C
92 90 91 sstrdi φ f : K 𝒫 C Fin ran f 𝒫 C
93 sspwuni ran f 𝒫 C ran f C
94 92 93 sylib φ f : K 𝒫 C Fin ran f C
95 elfpw D 𝒫 A × C Fin D A × C D Fin
96 95 simplbi D 𝒫 A × C Fin D A × C
97 rnss D A × C ran D ran A × C
98 17 96 97 3syl φ ran D ran A × C
99 rnxpss ran A × C C
100 98 99 sstrdi φ ran D C
101 100 adantr φ f : K 𝒫 C Fin ran D C
102 94 101 unssd φ f : K 𝒫 C Fin ran f ran D C
103 18 adantr φ f : K 𝒫 C Fin K Fin
104 ffn f : K 𝒫 C Fin f Fn K
105 104 adantl φ f : K 𝒫 C Fin f Fn K
106 dffn4 f Fn K f : K onto ran f
107 105 106 sylib φ f : K 𝒫 C Fin f : K onto ran f
108 fofi K Fin f : K onto ran f ran f Fin
109 103 107 108 syl2anc φ f : K 𝒫 C Fin ran f Fin
110 inss2 𝒫 C Fin Fin
111 90 110 sstrdi φ f : K 𝒫 C Fin ran f Fin
112 unifi ran f Fin ran f Fin ran f Fin
113 109 111 112 syl2anc φ f : K 𝒫 C Fin ran f Fin
114 elinel2 D 𝒫 A × C Fin D Fin
115 rnfi D Fin ran D Fin
116 17 114 115 3syl φ ran D Fin
117 116 adantr φ f : K 𝒫 C Fin ran D Fin
118 unfi ran f Fin ran D Fin ran f ran D Fin
119 113 117 118 syl2anc φ f : K 𝒫 C Fin ran f ran D Fin
120 elfpw ran f ran D 𝒫 C Fin ran f ran D C ran f ran D Fin
121 102 119 120 sylanbrc φ f : K 𝒫 C Fin ran f ran D 𝒫 C Fin
122 121 adantrr φ f : K 𝒫 C Fin j K z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g ran f ran D 𝒫 C Fin
123 ssun2 ran D ran f ran D
124 123 a1i φ f : K 𝒫 C Fin j K z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g ran D ran f ran D
125 121 adantlr φ j K f : K 𝒫 C Fin ran f ran D 𝒫 C Fin
126 fvssunirn f j ran f
127 ssun1 ran f ran f ran D
128 126 127 sstri f j ran f ran D
129 id z = ran f ran D z = ran f ran D
130 128 129 sseqtrrid z = ran f ran D f j z
131 pm5.5 f j z f j z G k C j F k z ran g L H j - ˙ g G k C j F k z ran g L H j - ˙ g
132 130 131 syl z = ran f ran D f j z G k C j F k z ran g L H j - ˙ g G k C j F k z ran g L H j - ˙ g
133 reseq2 z = ran f ran D k C j F k z = k C j F k ran f ran D
134 133 oveq2d z = ran f ran D G k C j F k z = G k C j F k ran f ran D
135 134 eleq1d z = ran f ran D G k C j F k z ran g L H j - ˙ g G k C j F k ran f ran D ran g L H j - ˙ g
136 132 135 bitrd z = ran f ran D f j z G k C j F k z ran g L H j - ˙ g G k C j F k ran f ran D ran g L H j - ˙ g
137 136 rspcv ran f ran D 𝒫 C Fin z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g G k C j F k ran f ran D ran g L H j - ˙ g
138 125 137 syl φ j K f : K 𝒫 C Fin z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g G k C j F k ran f ran D ran g L H j - ˙ g
139 2 ad2antrr φ j K f : K 𝒫 C Fin G CMnd
140 cmnmnd G CMnd G Mnd
141 139 140 syl φ j K f : K 𝒫 C Fin G Mnd
142 simplr φ j K f : K 𝒫 C Fin j K
143 119 adantlr φ j K f : K 𝒫 C Fin ran f ran D Fin
144 102 adantlr φ j K f : K 𝒫 C Fin ran f ran D C
145 144 sselda φ j K f : K 𝒫 C Fin k ran f ran D k C
146 6 adantr φ j K F : A × C B
147 146 22 jca φ j K F : A × C B j A
148 29 3expa F : A × C B j A k C j F k B
149 147 148 sylan φ j K k C j F k B
150 149 adantlr φ j K f : K 𝒫 C Fin k C j F k B
151 145 150 syldan φ j K f : K 𝒫 C Fin k ran f ran D j F k B
152 151 fmpttd φ j K f : K 𝒫 C Fin k ran f ran D j F k : ran f ran D B
153 eqid k ran f ran D j F k = k ran f ran D j F k
154 ovexd φ j K f : K 𝒫 C Fin k ran f ran D j F k V
155 10 fvexi 0 ˙ V
156 155 a1i φ j K f : K 𝒫 C Fin 0 ˙ V
157 153 143 154 156 fsuppmptdm φ j K f : K 𝒫 C Fin finSupp 0 ˙ k ran f ran D j F k
158 1 10 139 143 152 157 gsumcl φ j K f : K 𝒫 C Fin G k ran f ran D j F k B
159 velsn y j y = j
160 ovres y j k ran f ran D y F j × ran f ran D k = y F k
161 159 160 sylanbr y = j k ran f ran D y F j × ran f ran D k = y F k
162 oveq1 y = j y F k = j F k
163 162 adantr y = j k ran f ran D y F k = j F k
164 161 163 eqtrd y = j k ran f ran D y F j × ran f ran D k = j F k
165 164 mpteq2dva y = j k ran f ran D y F j × ran f ran D k = k ran f ran D j F k
166 165 oveq2d y = j G k ran f ran D y F j × ran f ran D k = G k ran f ran D j F k
167 1 166 gsumsn G Mnd j K G k ran f ran D j F k B G y j G k ran f ran D y F j × ran f ran D k = G k ran f ran D j F k
168 141 142 158 167 syl3anc φ j K f : K 𝒫 C Fin G y j G k ran f ran D y F j × ran f ran D k = G k ran f ran D j F k
169 snfi j Fin
170 169 a1i φ j K f : K 𝒫 C Fin j Fin
171 6 ad2antrr φ j K f : K 𝒫 C Fin F : A × C B
172 22 adantr φ j K f : K 𝒫 C Fin j A
173 172 snssd φ j K f : K 𝒫 C Fin j A
174 xpss12 j A ran f ran D C j × ran f ran D A × C
175 173 144 174 syl2anc φ j K f : K 𝒫 C Fin j × ran f ran D A × C
176 171 175 fssresd φ j K f : K 𝒫 C Fin F j × ran f ran D : j × ran f ran D B
177 xpfi j Fin ran f ran D Fin j × ran f ran D Fin
178 169 143 177 sylancr φ j K f : K 𝒫 C Fin j × ran f ran D Fin
179 176 178 156 fdmfifsupp φ j K f : K 𝒫 C Fin finSupp 0 ˙ F j × ran f ran D
180 1 10 139 170 143 176 179 gsumxp φ j K f : K 𝒫 C Fin G F j × ran f ran D = G y j G k ran f ran D y F j × ran f ran D k
181 144 resmptd φ j K f : K 𝒫 C Fin k C j F k ran f ran D = k ran f ran D j F k
182 181 oveq2d φ j K f : K 𝒫 C Fin G k C j F k ran f ran D = G k ran f ran D j F k
183 168 180 182 3eqtr4rd φ j K f : K 𝒫 C Fin G k C j F k ran f ran D = G F j × ran f ran D
184 183 eleq1d φ j K f : K 𝒫 C Fin G k C j F k ran f ran D ran g L H j - ˙ g G F j × ran f ran D ran g L H j - ˙ g
185 ovex H j - ˙ g V
186 76 185 elrnmpti G F j × ran f ran D ran g L H j - ˙ g g L G F j × ran f ran D = H j - ˙ g
187 isabl G Abel G Grp G CMnd
188 48 2 187 sylanbrc φ G Abel
189 188 ad3antrrr φ j K f : K 𝒫 C Fin g L G Abel
190 22 42 syldan φ j K H j B
191 190 ad2antrr φ j K f : K 𝒫 C Fin g L H j B
192 37 ad2antrr φ j K f : K 𝒫 C Fin L B
193 192 sselda φ j K f : K 𝒫 C Fin g L g B
194 1 12 189 191 193 ablnncan φ j K f : K 𝒫 C Fin g L H j - ˙ H j - ˙ g = g
195 simpr φ j K f : K 𝒫 C Fin g L g L
196 194 195 eqeltrd φ j K f : K 𝒫 C Fin g L H j - ˙ H j - ˙ g L
197 oveq2 G F j × ran f ran D = H j - ˙ g H j - ˙ G F j × ran f ran D = H j - ˙ H j - ˙ g
198 197 eleq1d G F j × ran f ran D = H j - ˙ g H j - ˙ G F j × ran f ran D L H j - ˙ H j - ˙ g L
199 196 198 syl5ibrcom φ j K f : K 𝒫 C Fin g L G F j × ran f ran D = H j - ˙ g H j - ˙ G F j × ran f ran D L
200 199 rexlimdva φ j K f : K 𝒫 C Fin g L G F j × ran f ran D = H j - ˙ g H j - ˙ G F j × ran f ran D L
201 186 200 syl5bi φ j K f : K 𝒫 C Fin G F j × ran f ran D ran g L H j - ˙ g H j - ˙ G F j × ran f ran D L
202 184 201 sylbid φ j K f : K 𝒫 C Fin G k C j F k ran f ran D ran g L H j - ˙ g H j - ˙ G F j × ran f ran D L
203 138 202 syld φ j K f : K 𝒫 C Fin z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g H j - ˙ G F j × ran f ran D L
204 203 an32s φ f : K 𝒫 C Fin j K z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g H j - ˙ G F j × ran f ran D L
205 204 ralimdva φ f : K 𝒫 C Fin j K z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g j K H j - ˙ G F j × ran f ran D L
206 205 impr φ f : K 𝒫 C Fin j K z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g j K H j - ˙ G F j × ran f ran D L
207 fveq2 j = x H j = H x
208 sneq j = x j = x
209 208 xpeq1d j = x j × ran f ran D = x × ran f ran D
210 209 reseq2d j = x F j × ran f ran D = F x × ran f ran D
211 210 oveq2d j = x G F j × ran f ran D = G F x × ran f ran D
212 207 211 oveq12d j = x H j - ˙ G F j × ran f ran D = H x - ˙ G F x × ran f ran D
213 212 eleq1d j = x H j - ˙ G F j × ran f ran D L H x - ˙ G F x × ran f ran D L
214 213 cbvralvw j K H j - ˙ G F j × ran f ran D L x K H x - ˙ G F x × ran f ran D L
215 206 214 sylib φ f : K 𝒫 C Fin j K z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g x K H x - ˙ G F x × ran f ran D L
216 sseq2 n = ran f ran D ran D n ran D ran f ran D
217 xpeq2 n = ran f ran D x × n = x × ran f ran D
218 217 reseq2d n = ran f ran D F x × n = F x × ran f ran D
219 218 oveq2d n = ran f ran D G F x × n = G F x × ran f ran D
220 219 oveq2d n = ran f ran D H x - ˙ G F x × n = H x - ˙ G F x × ran f ran D
221 220 eleq1d n = ran f ran D H x - ˙ G F x × n L H x - ˙ G F x × ran f ran D L
222 221 ralbidv n = ran f ran D x K H x - ˙ G F x × n L x K H x - ˙ G F x × ran f ran D L
223 216 222 anbi12d n = ran f ran D ran D n x K H x - ˙ G F x × n L ran D ran f ran D x K H x - ˙ G F x × ran f ran D L
224 223 rspcev ran f ran D 𝒫 C Fin ran D ran f ran D x K H x - ˙ G F x × ran f ran D L n 𝒫 C Fin ran D n x K H x - ˙ G F x × n L
225 122 124 215 224 syl12anc φ f : K 𝒫 C Fin j K z 𝒫 C Fin f j z G k C j F k z ran g L H j - ˙ g n 𝒫 C Fin ran D n x K H x - ˙ G F x × n L
226 88 225 exlimddv φ n 𝒫 C Fin ran D n x K H x - ˙ G F x × n L