Metamath Proof Explorer


Theorem tsmsxp

Description: Write a sum over a two-dimensional region as a double sum. This infinite group sum version of gsumxp is also known as Fubini's theorem. The converse is not necessarily true without additional assumptions. See tsmsxplem1 for the main proof; this part mostly sets up the local assumptions. (Contributed by Mario Carneiro, 21-Sep-2015)

Ref Expression
Hypotheses tsmsxp.b B=BaseG
tsmsxp.g φGCMnd
tsmsxp.2 φGTopGrp
tsmsxp.a φAV
tsmsxp.c φCW
tsmsxp.f φF:A×CB
tsmsxp.h φH:AB
tsmsxp.1 φjAHjGtsumskCjFk
Assertion tsmsxp φGtsumsFGtsumsH

Proof

Step Hyp Ref Expression
1 tsmsxp.b B=BaseG
2 tsmsxp.g φGCMnd
3 tsmsxp.2 φGTopGrp
4 tsmsxp.a φAV
5 tsmsxp.c φCW
6 tsmsxp.f φF:A×CB
7 tsmsxp.h φH:AB
8 tsmsxp.1 φjAHjGtsumskCjFk
9 tgptmd GTopGrpGTopMnd
10 3 9 syl φGTopMnd
11 10 3ad2ant1 φuTopOpenGxuGTopMnd
12 simp2 φuTopOpenGxuuTopOpenG
13 eqid TopOpenG=TopOpenG
14 13 1 tmdtopon GTopMndTopOpenGTopOnB
15 11 14 syl φuTopOpenGxuTopOpenGTopOnB
16 toponss TopOpenGTopOnBuTopOpenGuB
17 15 12 16 syl2anc φuTopOpenGxuuB
18 simp3 φuTopOpenGxuxu
19 17 18 sseldd φuTopOpenGxuxB
20 tmdmnd GTopMndGMnd
21 11 20 syl φuTopOpenGxuGMnd
22 eqid 0G=0G
23 1 22 mndidcl GMnd0GB
24 21 23 syl φuTopOpenGxu0GB
25 eqid +G=+G
26 1 25 22 mndrid GMndxBx+G0G=x
27 21 19 26 syl2anc φuTopOpenGxux+G0G=x
28 27 18 eqeltrd φuTopOpenGxux+G0Gu
29 1 13 25 tmdcn2 GTopMnduTopOpenGxB0GBx+G0GuvTopOpenGtTopOpenGxv0Gtcvdtc+Gdu
30 11 12 19 24 28 29 syl23anc φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gdu
31 r19.29 vTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzvvTopOpenGtTopOpenGxv0Gtcvdtc+GduvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzvtTopOpenGxv0Gtcvdtc+Gdu
32 simp31 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduxv
33 elfpw y𝒫A×CFinyA×CyFin
34 33 simplbi y𝒫A×CFinyA×C
35 34 ad2antrl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvyA×C
36 dmss yA×CdomydomA×C
37 35 36 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvdomydomA×C
38 dmxpss domA×CA
39 37 38 sstrdi φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvdomyA
40 elinel2 y𝒫A×CFinyFin
41 40 ad2antrl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvyFin
42 dmfi yFindomyFin
43 41 42 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvdomyFin
44 elfpw domy𝒫AFindomyAdomyFin
45 39 43 44 sylanbrc φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvdomy𝒫AFin
46 eqid G=G
47 simpl11 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybφ
48 47 2 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybGCMnd
49 47 10 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybGTopMnd
50 simprrl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybb𝒫AFin
51 50 elin2d φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybbFin
52 simpl2r φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybtTopOpenG
53 49 20 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybGMnd
54 53 23 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomyb0GB
55 hashcl bFinb0
56 51 55 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybb0
57 1 46 22 mulgnn0z GMndb0bG0G=0G
58 53 56 57 syl2anc φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybbG0G=0G
59 simpl32 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomyb0Gt
60 58 59 eqeltrd φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybbG0Gt
61 13 1 46 48 49 51 52 54 60 tmdgsum2 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgt
62 simp111 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtφ
63 62 2 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtGCMnd
64 62 3 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtGTopGrp
65 62 4 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtAV
66 62 5 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtCW
67 62 6 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtF:A×CB
68 62 7 syl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtH:AB
69 62 8 sylan φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtjAHjGtsumskCjFk
70 eqid -G=-G
71 simp3l φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtsTopOpenG
72 simp3rl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgt0Gs
73 simp2rl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtb𝒫AFin
74 simp2rr φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtdomyb
75 simp2ll φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgty𝒫A×CFin
76 1 63 64 65 66 67 68 69 13 22 25 70 71 72 73 74 75 tsmsxplem1 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×ns
77 48 3adant3 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsGCMnd
78 64 3adant3r φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsGTopGrp
79 65 3adant3r φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsAV
80 66 3adant3r φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsCW
81 67 3adant3r φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsF:A×CB
82 68 3adant3r φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsH:AB
83 47 3adant3 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsφ
84 83 8 sylan φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsjAHjGtsumskCjFk
85 simp3ll φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nssTopOpenG
86 72 3adant3r φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×ns0Gs
87 simp2rl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsb𝒫AFin
88 simp133 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nscvdtc+Gdu
89 simp3rl φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsn𝒫CFin
90 simp2ll φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsy𝒫A×CFin
91 simp2rr φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsdomyb
92 simp3rr φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsranynxbHx-GGFx×ns
93 92 simpld φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsranyn
94 relxp RelA×C
95 relss yA×CRelA×CRely
96 34 94 95 mpisyl y𝒫A×CFinRely
97 relssdmrn Relyydomy×rany
98 96 97 syl y𝒫A×CFinydomy×rany
99 xpss12 domybranyndomy×ranyb×n
100 98 99 sylan9ss y𝒫A×CFindomybranynyb×n
101 90 91 93 100 syl12anc φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsyb×n
102 92 simprd φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsxbHx-GGFx×ns
103 sseq2 z=b×nyzyb×n
104 reseq2 z=b×nFz=Fb×n
105 104 oveq2d z=b×nGFz=GFb×n
106 105 eleq1d z=b×nGFzvGFb×nv
107 103 106 imbi12d z=b×nyzGFzvyb×nGFb×nv
108 simp2lr φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsz𝒫A×CFinyzGFzv
109 elfpw b𝒫AFinbAbFin
110 elfpw n𝒫CFinnCnFin
111 xpss12 bAnCb×nA×C
112 xpfi bFinnFinb×nFin
113 111 112 anim12i bAnCbFinnFinb×nA×Cb×nFin
114 113 an4s bAbFinnCnFinb×nA×Cb×nFin
115 109 110 114 syl2anb b𝒫AFinn𝒫CFinb×nA×Cb×nFin
116 elfpw b×n𝒫A×CFinb×nA×Cb×nFin
117 115 116 sylibr b𝒫AFinn𝒫CFinb×n𝒫A×CFin
118 87 89 117 syl2anc φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsb×n𝒫A×CFin
119 107 108 118 rspcdva φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsyb×nGFb×nv
120 101 119 mpd φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsGFb×nv
121 simp3lr φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×ns0GsgsbGgt
122 121 simprd φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsgsbGgt
123 oveq2 g=hGg=Gh
124 123 eleq1d g=hGgtGht
125 124 cbvralvw gsbGgthsbGht
126 122 125 sylib φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nshsbGht
127 1 77 78 79 80 81 82 84 13 22 25 70 85 86 87 88 89 101 102 120 126 tsmsxplem2 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsGHbu
128 127 3exp φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsGHbu
129 128 exp4a φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsGHbu
130 129 3imp1 φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtn𝒫CFinranynxbHx-GGFx×nsGHbu
131 76 130 rexlimddv φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtGHbu
132 131 3expa φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybsTopOpenG0GsgsbGgtGHbu
133 61 132 rexlimddv φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybGHbu
134 133 anassrs φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybGHbu
135 134 expr φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybGHbu
136 135 ralrimiva φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzvb𝒫AFindomybGHbu
137 sseq1 a=domyabdomyb
138 137 rspceaimv domy𝒫AFinb𝒫AFindomybGHbua𝒫AFinb𝒫AFinabGHbu
139 45 136 138 syl2anc φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzva𝒫AFinb𝒫AFinabGHbu
140 139 rexlimdvaa φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduy𝒫A×CFinz𝒫A×CFinyzGFzva𝒫AFinb𝒫AFinabGHbu
141 32 140 embantd φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduxvy𝒫A×CFinz𝒫A×CFinyzGFzva𝒫AFinb𝒫AFinabGHbu
142 141 3expia φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduxvy𝒫A×CFinz𝒫A×CFinyzGFzva𝒫AFinb𝒫AFinabGHbu
143 142 anassrs φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduxvy𝒫A×CFinz𝒫A×CFinyzGFzva𝒫AFinb𝒫AFinabGHbu
144 143 rexlimdva φuTopOpenGxuvTopOpenGtTopOpenGxv0Gtcvdtc+Gduxvy𝒫A×CFinz𝒫A×CFinyzGFzva𝒫AFinb𝒫AFinabGHbu
145 144 impcomd φuTopOpenGxuvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzvtTopOpenGxv0Gtcvdtc+Gdua𝒫AFinb𝒫AFinabGHbu
146 145 rexlimdva φuTopOpenGxuvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzvtTopOpenGxv0Gtcvdtc+Gdua𝒫AFinb𝒫AFinabGHbu
147 31 146 syl5 φuTopOpenGxuvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzvvTopOpenGtTopOpenGxv0Gtcvdtc+Gdua𝒫AFinb𝒫AFinabGHbu
148 30 147 mpan2d φuTopOpenGxuvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzva𝒫AFinb𝒫AFinabGHbu
149 148 3expia φuTopOpenGxuvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzva𝒫AFinb𝒫AFinabGHbu
150 149 com23 φuTopOpenGvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzvxua𝒫AFinb𝒫AFinabGHbu
151 150 ralrimdva φvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzvuTopOpenGxua𝒫AFinb𝒫AFinabGHbu
152 151 anim2d φxBvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzvxBuTopOpenGxua𝒫AFinb𝒫AFinabGHbu
153 eqid 𝒫A×CFin=𝒫A×CFin
154 tgptps GTopGrpGTopSp
155 3 154 syl φGTopSp
156 4 5 xpexd φA×CV
157 1 13 153 2 155 156 6 eltsms φxGtsumsFxBvTopOpenGxvy𝒫A×CFinz𝒫A×CFinyzGFzv
158 eqid 𝒫AFin=𝒫AFin
159 1 13 158 2 155 4 7 eltsms φxGtsumsHxBuTopOpenGxua𝒫AFinb𝒫AFinabGHbu
160 152 157 159 3imtr4d φxGtsumsFxGtsumsH
161 160 ssrdv φGtsumsFGtsumsH