Description: The property of being a sum of the sequence F in the topological commutative monoid G . (Contributed by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eltsms.b | |
|
eltsms.j | |
||
eltsms.s | |
||
eltsms.1 | |
||
eltsms.2 | |
||
eltsms.a | |
||
eltsms.f | |
||
Assertion | eltsms | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltsms.b | |
|
2 | eltsms.j | |
|
3 | eltsms.s | |
|
4 | eltsms.1 | |
|
5 | eltsms.2 | |
|
6 | eltsms.a | |
|
7 | eltsms.f | |
|
8 | eqid | |
|
9 | 1 2 3 8 4 6 7 | tsmsval | |
10 | 9 | eleq2d | |
11 | 1 2 | istps | |
12 | 5 11 | sylib | |
13 | eqid | |
|
14 | 3 13 8 6 | tsmsfbas | |
15 | 1 3 4 6 7 | tsmslem1 | |
16 | 15 | fmpttd | |
17 | eqid | |
|
18 | 17 | flffbas | |
19 | 12 14 16 18 | syl3anc | |
20 | pwexg | |
|
21 | inex1g | |
|
22 | 6 20 21 | 3syl | |
23 | 3 22 | eqeltrid | |
24 | 23 | adantr | |
25 | rabexg | |
|
26 | 24 25 | syl | |
27 | 26 | ralrimivw | |
28 | imaeq2 | |
|
29 | 28 | sseq1d | |
30 | 13 29 | rexrnmptw | |
31 | 27 30 | syl | |
32 | funmpt | |
|
33 | ssrab2 | |
|
34 | ovex | |
|
35 | eqid | |
|
36 | 34 35 | dmmpti | |
37 | 33 36 | sseqtrri | |
38 | funimass3 | |
|
39 | 32 37 38 | mp2an | |
40 | 35 | mptpreima | |
41 | 40 | sseq2i | |
42 | ss2rab | |
|
43 | 39 41 42 | 3bitri | |
44 | 43 | rexbii | |
45 | 31 44 | bitrdi | |
46 | 45 | imbi2d | |
47 | 46 | ralbidva | |
48 | 47 | anbi2d | |
49 | 10 19 48 | 3bitrd | |