Metamath Proof Explorer


Theorem tsmsi

Description: The property of being a sum of the sequence F in the topological commutative monoid G . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses eltsms.b B=BaseG
eltsms.j J=TopOpenG
eltsms.s S=𝒫AFin
eltsms.1 φGCMnd
eltsms.2 φGTopSp
eltsms.a φAV
eltsms.f φF:AB
tsmsi.3 φCGtsumsF
tsmsi.4 φUJ
tsmsi.5 φCU
Assertion tsmsi φzSySzyGFyU

Proof

Step Hyp Ref Expression
1 eltsms.b B=BaseG
2 eltsms.j J=TopOpenG
3 eltsms.s S=𝒫AFin
4 eltsms.1 φGCMnd
5 eltsms.2 φGTopSp
6 eltsms.a φAV
7 eltsms.f φF:AB
8 tsmsi.3 φCGtsumsF
9 tsmsi.4 φUJ
10 tsmsi.5 φCU
11 eleq2 u=UCuCU
12 eleq2 u=UGFyuGFyU
13 12 imbi2d u=UzyGFyuzyGFyU
14 13 rexralbidv u=UzSySzyGFyuzSySzyGFyU
15 11 14 imbi12d u=UCuzSySzyGFyuCUzSySzyGFyU
16 1 2 3 4 5 6 7 eltsms φCGtsumsFCBuJCuzSySzyGFyu
17 8 16 mpbid φCBuJCuzSySzyGFyu
18 17 simprd φuJCuzSySzyGFyu
19 15 18 9 rspcdva φCUzSySzyGFyU
20 10 19 mpd φzSySzyGFyU