Step |
Hyp |
Ref |
Expression |
1 |
|
esumrnmpt.0 |
|- F/_ k A |
2 |
|
esumrnmpt.1 |
|- ( y = B -> C = D ) |
3 |
|
esumrnmpt.2 |
|- ( ph -> A e. V ) |
4 |
|
esumrnmpt.3 |
|- ( ( ph /\ k e. A ) -> D e. ( 0 [,] +oo ) ) |
5 |
|
esumrnmpt.4 |
|- ( ( ph /\ k e. A ) -> B e. ( W \ { (/) } ) ) |
6 |
|
esumrnmpt.5 |
|- ( ph -> Disj_ k e. A B ) |
7 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
8 |
7
|
rnmpt |
|- ran ( k e. A |-> B ) = { z | E. k e. A z = B } |
9 |
|
esumeq1 |
|- ( ran ( k e. A |-> B ) = { z | E. k e. A z = B } -> sum* y e. ran ( k e. A |-> B ) C = sum* y e. { z | E. k e. A z = B } C ) |
10 |
8 9
|
ax-mp |
|- sum* y e. ran ( k e. A |-> B ) C = sum* y e. { z | E. k e. A z = B } C |
11 |
|
nfcv |
|- F/_ k C |
12 |
|
nfv |
|- F/ k ph |
13 |
12 1 5 6
|
disjdsct |
|- ( ph -> Fun `' ( k e. A |-> B ) ) |
14 |
11 12 1 2 3 13 4 5
|
esumc |
|- ( ph -> sum* k e. A D = sum* y e. { z | E. k e. A z = B } C ) |
15 |
10 14
|
eqtr4id |
|- ( ph -> sum* y e. ran ( k e. A |-> B ) C = sum* k e. A D ) |