Metamath Proof Explorer


Theorem esumrnmpt

Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Hypotheses esumrnmpt.0
|- F/_ k A
esumrnmpt.1
|- ( y = B -> C = D )
esumrnmpt.2
|- ( ph -> A e. V )
esumrnmpt.3
|- ( ( ph /\ k e. A ) -> D e. ( 0 [,] +oo ) )
esumrnmpt.4
|- ( ( ph /\ k e. A ) -> B e. ( W \ { (/) } ) )
esumrnmpt.5
|- ( ph -> Disj_ k e. A B )
Assertion esumrnmpt
|- ( ph -> sum* y e. ran ( k e. A |-> B ) C = sum* k e. A D )

Proof

Step Hyp Ref Expression
1 esumrnmpt.0
 |-  F/_ k A
2 esumrnmpt.1
 |-  ( y = B -> C = D )
3 esumrnmpt.2
 |-  ( ph -> A e. V )
4 esumrnmpt.3
 |-  ( ( ph /\ k e. A ) -> D e. ( 0 [,] +oo ) )
5 esumrnmpt.4
 |-  ( ( ph /\ k e. A ) -> B e. ( W \ { (/) } ) )
6 esumrnmpt.5
 |-  ( ph -> Disj_ k e. A B )
7 eqid
 |-  ( k e. A |-> B ) = ( k e. A |-> B )
8 7 rnmpt
 |-  ran ( k e. A |-> B ) = { z | E. k e. A z = B }
9 esumeq1
 |-  ( ran ( k e. A |-> B ) = { z | E. k e. A z = B } -> sum* y e. ran ( k e. A |-> B ) C = sum* y e. { z | E. k e. A z = B } C )
10 8 9 ax-mp
 |-  sum* y e. ran ( k e. A |-> B ) C = sum* y e. { z | E. k e. A z = B } C
11 nfcv
 |-  F/_ k C
12 nfv
 |-  F/ k ph
13 12 1 5 6 disjdsct
 |-  ( ph -> Fun `' ( k e. A |-> B ) )
14 11 12 1 2 3 13 4 5 esumc
 |-  ( ph -> sum* k e. A D = sum* y e. { z | E. k e. A z = B } C )
15 10 14 eqtr4id
 |-  ( ph -> sum* y e. ran ( k e. A |-> B ) C = sum* k e. A D )