Metamath Proof Explorer


Theorem abrexexd

Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses abrexexd.0 𝑥 𝐴
abrexexd.1 ( 𝜑𝐴 ∈ V )
Assertion abrexexd ( 𝜑 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ∈ V )

Proof

Step Hyp Ref Expression
1 abrexexd.0 𝑥 𝐴
2 abrexexd.1 ( 𝜑𝐴 ∈ V )
3 rnopab ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝑦 = 𝐵 ) }
4 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
5 4 rneqi ran ( 𝑥𝐴𝐵 ) = ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
6 df-rex ( ∃ 𝑥𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴𝑦 = 𝐵 ) )
7 6 abbii { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝑦 = 𝐵 ) }
8 3 5 7 3eqtr4i ran ( 𝑥𝐴𝐵 ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 }
9 funmpt Fun ( 𝑥𝐴𝐵 )
10 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
11 10 dmmpt dom ( 𝑥𝐴𝐵 ) = { 𝑥𝐴𝐵 ∈ V }
12 1 rabexgfGS ( 𝐴 ∈ V → { 𝑥𝐴𝐵 ∈ V } ∈ V )
13 11 12 eqeltrid ( 𝐴 ∈ V → dom ( 𝑥𝐴𝐵 ) ∈ V )
14 funex ( ( Fun ( 𝑥𝐴𝐵 ) ∧ dom ( 𝑥𝐴𝐵 ) ∈ V ) → ( 𝑥𝐴𝐵 ) ∈ V )
15 9 13 14 sylancr ( 𝐴 ∈ V → ( 𝑥𝐴𝐵 ) ∈ V )
16 rnexg ( ( 𝑥𝐴𝐵 ) ∈ V → ran ( 𝑥𝐴𝐵 ) ∈ V )
17 2 15 16 3syl ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ∈ V )
18 8 17 eqeltrrid ( 𝜑 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ∈ V )