Step |
Hyp |
Ref |
Expression |
1 |
|
abrexexd.0 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
abrexexd.1 |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
3 |
|
rnopab |
⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
4 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
5 |
4
|
rneqi |
⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
6 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) |
7 |
6
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
8 |
3 5 7
|
3eqtr4i |
⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
9 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
11 |
10
|
dmmpt |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } |
12 |
1
|
rabexgfGS |
⊢ ( 𝐴 ∈ V → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V } ∈ V ) |
13 |
11 12
|
eqeltrid |
⊢ ( 𝐴 ∈ V → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
14 |
|
funex |
⊢ ( ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
15 |
9 13 14
|
sylancr |
⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
16 |
|
rnexg |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
17 |
2 15 16
|
3syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
18 |
8 17
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ V ) |