Metamath Proof Explorer


Theorem abrexexd

Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses abrexexd.0
|- F/_ x A
abrexexd.1
|- ( ph -> A e. _V )
Assertion abrexexd
|- ( ph -> { y | E. x e. A y = B } e. _V )

Proof

Step Hyp Ref Expression
1 abrexexd.0
 |-  F/_ x A
2 abrexexd.1
 |-  ( ph -> A e. _V )
3 rnopab
 |-  ran { <. x , y >. | ( x e. A /\ y = B ) } = { y | E. x ( x e. A /\ y = B ) }
4 df-mpt
 |-  ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) }
5 4 rneqi
 |-  ran ( x e. A |-> B ) = ran { <. x , y >. | ( x e. A /\ y = B ) }
6 df-rex
 |-  ( E. x e. A y = B <-> E. x ( x e. A /\ y = B ) )
7 6 abbii
 |-  { y | E. x e. A y = B } = { y | E. x ( x e. A /\ y = B ) }
8 3 5 7 3eqtr4i
 |-  ran ( x e. A |-> B ) = { y | E. x e. A y = B }
9 funmpt
 |-  Fun ( x e. A |-> B )
10 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
11 10 dmmpt
 |-  dom ( x e. A |-> B ) = { x e. A | B e. _V }
12 1 rabexgfGS
 |-  ( A e. _V -> { x e. A | B e. _V } e. _V )
13 11 12 eqeltrid
 |-  ( A e. _V -> dom ( x e. A |-> B ) e. _V )
14 funex
 |-  ( ( Fun ( x e. A |-> B ) /\ dom ( x e. A |-> B ) e. _V ) -> ( x e. A |-> B ) e. _V )
15 9 13 14 sylancr
 |-  ( A e. _V -> ( x e. A |-> B ) e. _V )
16 rnexg
 |-  ( ( x e. A |-> B ) e. _V -> ran ( x e. A |-> B ) e. _V )
17 2 15 16 3syl
 |-  ( ph -> ran ( x e. A |-> B ) e. _V )
18 8 17 eqeltrrid
 |-  ( ph -> { y | E. x e. A y = B } e. _V )