Metamath Proof Explorer


Theorem abrexexd

Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses abrexexd.0 _xA
abrexexd.1 φAV
Assertion abrexexd φy|xAy=BV

Proof

Step Hyp Ref Expression
1 abrexexd.0 _xA
2 abrexexd.1 φAV
3 rnopab ranxy|xAy=B=y|xxAy=B
4 df-mpt xAB=xy|xAy=B
5 4 rneqi ranxAB=ranxy|xAy=B
6 df-rex xAy=BxxAy=B
7 6 abbii y|xAy=B=y|xxAy=B
8 3 5 7 3eqtr4i ranxAB=y|xAy=B
9 funmpt FunxAB
10 eqid xAB=xAB
11 10 dmmpt domxAB=xA|BV
12 1 rabexgfGS AVxA|BVV
13 11 12 eqeltrid AVdomxABV
14 funex FunxABdomxABVxABV
15 9 13 14 sylancr AVxABV
16 rnexg xABVranxABV
17 2 15 16 3syl φranxABV
18 8 17 eqeltrrid φy|xAy=BV