Metamath Proof Explorer


Theorem abrexexd

Description: Existence of a class abstraction of existentially restricted sets. (Contributed by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypotheses abrexexd.0 _ x A
abrexexd.1 φ A V
Assertion abrexexd φ y | x A y = B V

Proof

Step Hyp Ref Expression
1 abrexexd.0 _ x A
2 abrexexd.1 φ A V
3 rnopab ran x y | x A y = B = y | x x A y = B
4 df-mpt x A B = x y | x A y = B
5 4 rneqi ran x A B = ran x y | x A y = B
6 df-rex x A y = B x x A y = B
7 6 abbii y | x A y = B = y | x x A y = B
8 3 5 7 3eqtr4i ran x A B = y | x A y = B
9 funmpt Fun x A B
10 eqid x A B = x A B
11 10 dmmpt dom x A B = x A | B V
12 1 rabexgfGS A V x A | B V V
13 11 12 eqeltrid A V dom x A B V
14 funex Fun x A B dom x A B V x A B V
15 9 13 14 sylancr A V x A B V
16 rnexg x A B V ran x A B V
17 2 15 16 3syl φ ran x A B V
18 8 17 eqeltrrid φ y | x A y = B V