| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elabreximd.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
elabreximd.2 |
⊢ Ⅎ 𝑥 𝜒 |
| 3 |
|
elabreximd.3 |
⊢ ( 𝐴 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) |
| 4 |
|
elabreximd.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
elabreximd.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝜓 ) |
| 6 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐶 𝐴 = 𝐵 ) ) |
| 8 |
7
|
elabg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐶 𝐴 = 𝐵 ) ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐶 𝐴 = 𝐵 ) ) |
| 10 |
9
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 } ) → ∃ 𝑥 ∈ 𝐶 𝐴 = 𝐵 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
| 12 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝐴 = 𝐵 ) → 𝜓 ) |
| 13 |
3
|
biimpar |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜓 ) → 𝜒 ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝐴 = 𝐵 ) → 𝜒 ) |
| 15 |
14
|
exp31 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 → ( 𝐴 = 𝐵 → 𝜒 ) ) ) |
| 16 |
1 2 15
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐶 𝐴 = 𝐵 → 𝜒 ) ) |
| 17 |
16
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ 𝐶 𝐴 = 𝐵 ) → 𝜒 ) |
| 18 |
10 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑦 = 𝐵 } ) → 𝜒 ) |