Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abrexss.1 | ⊢ Ⅎ 𝑥 𝐶 | |
| Assertion | abrexss | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexss.1 | ⊢ Ⅎ 𝑥 𝐶 | |
| 2 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
| 3 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐶 |
| 4 | eleq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) | |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | 5 | a1i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → 𝑧 ∈ V ) |
| 7 | rspa | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) | |
| 8 | 2 3 4 6 7 | elabreximd | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) → 𝑧 ∈ 𝐶 ) |
| 9 | 8 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } → 𝑧 ∈ 𝐶 ) ) |
| 10 | 9 | ssrdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ⊆ 𝐶 ) |