Metamath Proof Explorer


Theorem abrexss

Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017)

Ref Expression
Hypothesis abrexss.1 𝑥 𝐶
Assertion abrexss ( ∀ 𝑥𝐴 𝐵𝐶 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 abrexss.1 𝑥 𝐶
2 nfra1 𝑥𝑥𝐴 𝐵𝐶
3 1 nfcri 𝑥 𝑧𝐶
4 eleq1 ( 𝑧 = 𝐵 → ( 𝑧𝐶𝐵𝐶 ) )
5 vex 𝑧 ∈ V
6 5 a1i ( ∀ 𝑥𝐴 𝐵𝐶𝑧 ∈ V )
7 rspa ( ( ∀ 𝑥𝐴 𝐵𝐶𝑥𝐴 ) → 𝐵𝐶 )
8 2 3 4 6 7 elabreximd ( ( ∀ 𝑥𝐴 𝐵𝐶𝑧 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ) → 𝑧𝐶 )
9 8 ex ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } → 𝑧𝐶 ) )
10 9 ssrdv ( ∀ 𝑥𝐴 𝐵𝐶 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ⊆ 𝐶 )