Metamath Proof Explorer


Theorem measvunilem0

Description: Lemma for measvuni . (Contributed by Thierry Arnoux, 6-Mar-2017)

Ref Expression
Hypothesis measvunilem.0.1 𝑥 𝐴
Assertion measvunilem0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥𝐴 𝐵 ) = Σ* 𝑥𝐴 ( 𝑀𝐵 ) )

Proof

Step Hyp Ref Expression
1 measvunilem.0.1 𝑥 𝐴
2 simp3l ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝐴 ≼ ω )
3 ctex ( 𝐴 ≼ ω → 𝐴 ∈ V )
4 1 esum0 ( 𝐴 ∈ V → Σ* 𝑥𝐴 0 = 0 )
5 2 3 4 3syl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → Σ* 𝑥𝐴 0 = 0 )
6 nfv 𝑥 𝑀 ∈ ( measures ‘ 𝑆 )
7 nfra1 𝑥𝑥𝐴 𝐵 ∈ { ∅ }
8 nfcv 𝑥
9 nfcv 𝑥 ω
10 1 8 9 nfbr 𝑥 𝐴 ≼ ω
11 nfdisj1 𝑥 Disj 𝑥𝐴 𝐵
12 10 11 nfan 𝑥 ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 )
13 6 7 12 nf3an 𝑥 ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) )
14 eqidd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝐴 = 𝐴 )
15 simp2 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ∀ 𝑥𝐴 𝐵 ∈ { ∅ } )
16 15 r19.21bi ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝐵 ∈ { ∅ } )
17 elsni ( 𝐵 ∈ { ∅ } → 𝐵 = ∅ )
18 16 17 syl ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥𝐴 ) → 𝐵 = ∅ )
19 18 fveq2d ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥𝐴 ) → ( 𝑀𝐵 ) = ( 𝑀 ‘ ∅ ) )
20 measvnul ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( 𝑀 ‘ ∅ ) = 0 )
21 20 3ad2ant1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 ‘ ∅ ) = 0 )
22 21 adantr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥𝐴 ) → ( 𝑀 ‘ ∅ ) = 0 )
23 19 22 eqtrd ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥𝐴 ) → ( 𝑀𝐵 ) = 0 )
24 13 14 23 esumeq12dvaf ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → Σ* 𝑥𝐴 ( 𝑀𝐵 ) = Σ* 𝑥𝐴 0 )
25 13 1 1 14 18 iuneq12daf ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝑥𝐴 𝐵 = 𝑥𝐴 ∅ )
26 iun0 𝑥𝐴 ∅ = ∅
27 25 26 eqtrdi ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝑥𝐴 𝐵 = ∅ )
28 27 fveq2d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥𝐴 𝐵 ) = ( 𝑀 ‘ ∅ ) )
29 28 21 eqtrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥𝐴 𝐵 ) = 0 )
30 5 24 29 3eqtr4rd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵 ∈ { ∅ } ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥𝐴 𝐵 ) = Σ* 𝑥𝐴 ( 𝑀𝐵 ) )