Metamath Proof Explorer


Theorem measvuni

Description: The measure of a countable disjoint union is the sum of the measures. This theorem uses a collection rather than a set of subsets of S . (Contributed by Thierry Arnoux, 7-Mar-2017)

Ref Expression
Assertion measvuni ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥𝐴 𝐵 ) = Σ* 𝑥𝐴 ( 𝑀𝐵 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
2 rabid ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ↔ ( 𝑥𝐴𝐵 ∈ { ∅ } ) )
3 2 simprbi ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } → 𝐵 ∈ { ∅ } )
4 3 adantl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ) → 𝐵 ∈ { ∅ } )
5 4 ralrimiva ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ∈ { ∅ } )
6 5 3ad2ant1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ∈ { ∅ } )
7 ssrab2 { 𝑥𝐴𝐵 ∈ { ∅ } } ⊆ 𝐴
8 ssct ( ( { 𝑥𝐴𝐵 ∈ { ∅ } } ⊆ 𝐴𝐴 ≼ ω ) → { 𝑥𝐴𝐵 ∈ { ∅ } } ≼ ω )
9 7 8 mpan ( 𝐴 ≼ ω → { 𝑥𝐴𝐵 ∈ { ∅ } } ≼ ω )
10 9 adantr ( ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) → { 𝑥𝐴𝐵 ∈ { ∅ } } ≼ ω )
11 10 3ad2ant3 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → { 𝑥𝐴𝐵 ∈ { ∅ } } ≼ ω )
12 simp3r ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → Disj 𝑥𝐴 𝐵 )
13 nfrab1 𝑥 { 𝑥𝐴𝐵 ∈ { ∅ } }
14 nfcv 𝑥 𝐴
15 13 14 disjss1f ( { 𝑥𝐴𝐵 ∈ { ∅ } } ⊆ 𝐴 → ( Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ) )
16 7 12 15 mpsyl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → Disj 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 )
17 13 measvunilem0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ∈ { ∅ } ∧ ( { 𝑥𝐴𝐵 ∈ { ∅ } } ≼ ω ∧ Disj 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ) ) → ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ) = Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ( 𝑀𝐵 ) )
18 1 6 11 16 17 syl112anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ) = Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ( 𝑀𝐵 ) )
19 rabid ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ↔ ( 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) )
20 19 simprbi ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } → 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) )
21 20 adantl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) )
22 21 ralrimiva ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) )
23 22 3ad2ant1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) )
24 ssrab2 { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ⊆ 𝐴
25 ssct ( ( { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ⊆ 𝐴𝐴 ≼ ω ) → { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω )
26 24 25 mpan ( 𝐴 ≼ ω → { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω )
27 26 adantr ( ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) → { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω )
28 27 3ad2ant3 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω )
29 nfrab1 𝑥 { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) }
30 29 14 disjss1f ( { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ⊆ 𝐴 → ( Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) )
31 24 12 30 mpsyl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → Disj 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 )
32 29 measvunilem ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω ∧ Disj 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) → ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀𝐵 ) )
33 1 23 28 31 32 syl112anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀𝐵 ) )
34 18 33 oveq12d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ) +𝑒 ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) = ( Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ( 𝑀𝐵 ) +𝑒 Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀𝐵 ) ) )
35 nfv 𝑥 𝑀 ∈ ( measures ‘ 𝑆 )
36 nfra1 𝑥𝑥𝐴 𝐵𝑆
37 nfv 𝑥 𝐴 ≼ ω
38 nfdisj1 𝑥 Disj 𝑥𝐴 𝐵
39 37 38 nfan 𝑥 ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 )
40 35 36 39 nf3an 𝑥 ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) )
41 13 29 nfun 𝑥 ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∪ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } )
42 simp2 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ∀ 𝑥𝐴 𝐵𝑆 )
43 rabid2 ( 𝐴 = { 𝑥𝐴𝐵𝑆 } ↔ ∀ 𝑥𝐴 𝐵𝑆 )
44 42 43 sylibr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝐴 = { 𝑥𝐴𝐵𝑆 } )
45 elun ( 𝐵 ∈ ( { ∅ } ∪ ( 𝑆 ∖ { ∅ } ) ) ↔ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) )
46 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
47 0elsiga ( 𝑆 ran sigAlgebra → ∅ ∈ 𝑆 )
48 snssi ( ∅ ∈ 𝑆 → { ∅ } ⊆ 𝑆 )
49 46 47 48 3syl ( 𝑀 ∈ ( measures ‘ 𝑆 ) → { ∅ } ⊆ 𝑆 )
50 undif ( { ∅ } ⊆ 𝑆 ↔ ( { ∅ } ∪ ( 𝑆 ∖ { ∅ } ) ) = 𝑆 )
51 49 50 sylib ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( { ∅ } ∪ ( 𝑆 ∖ { ∅ } ) ) = 𝑆 )
52 51 eleq2d ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( 𝐵 ∈ ( { ∅ } ∪ ( 𝑆 ∖ { ∅ } ) ) ↔ 𝐵𝑆 ) )
53 45 52 bitr3id ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) ↔ 𝐵𝑆 ) )
54 53 rabbidv ( 𝑀 ∈ ( measures ‘ 𝑆 ) → { 𝑥𝐴 ∣ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } = { 𝑥𝐴𝐵𝑆 } )
55 54 3ad2ant1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → { 𝑥𝐴 ∣ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } = { 𝑥𝐴𝐵𝑆 } )
56 44 55 eqtr4d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝐴 = { 𝑥𝐴 ∣ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } )
57 unrab ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∪ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) = { 𝑥𝐴 ∣ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) }
58 56 57 eqtr4di ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝐴 = ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∪ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) )
59 eqidd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝐵 = 𝐵 )
60 40 14 41 58 59 iuneq12df ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝑥𝐴 𝐵 = 𝑥 ∈ ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∪ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) 𝐵 )
61 60 fveq2d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥𝐴 𝐵 ) = ( 𝑀 𝑥 ∈ ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∪ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) 𝐵 ) )
62 iunxun 𝑥 ∈ ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∪ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) 𝐵 = ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 )
63 62 fveq2i ( 𝑀 𝑥 ∈ ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∪ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) 𝐵 ) = ( 𝑀 ‘ ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) )
64 61 63 eqtrdi ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥𝐴 𝐵 ) = ( 𝑀 ‘ ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) )
65 46 3ad2ant1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝑆 ran sigAlgebra )
66 47 adantr ( ( 𝑆 ran sigAlgebra ∧ 𝐵 ∈ { ∅ } ) → ∅ ∈ 𝑆 )
67 elsni ( 𝐵 ∈ { ∅ } → 𝐵 = ∅ )
68 67 eleq1d ( 𝐵 ∈ { ∅ } → ( 𝐵𝑆 ↔ ∅ ∈ 𝑆 ) )
69 68 adantl ( ( 𝑆 ran sigAlgebra ∧ 𝐵 ∈ { ∅ } ) → ( 𝐵𝑆 ↔ ∅ ∈ 𝑆 ) )
70 66 69 mpbird ( ( 𝑆 ran sigAlgebra ∧ 𝐵 ∈ { ∅ } ) → 𝐵𝑆 )
71 46 3 70 syl2an ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ) → 𝐵𝑆 )
72 71 ralrimiva ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵𝑆 )
73 72 3ad2ant1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵𝑆 )
74 13 sigaclcuni ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵𝑆 ∧ { 𝑥𝐴𝐵 ∈ { ∅ } } ≼ ω ) → 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵𝑆 )
75 65 73 11 74 syl3anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵𝑆 )
76 21 eldifad ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝐵𝑆 )
77 76 ralrimiva ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵𝑆 )
78 77 3ad2ant1 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵𝑆 )
79 29 sigaclcuni ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵𝑆 ∧ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω ) → 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵𝑆 )
80 65 78 28 79 syl3anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵𝑆 )
81 3 67 syl ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } → 𝐵 = ∅ )
82 81 iuneq2i 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 = 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ∅
83 iun0 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ∅ = ∅
84 82 83 eqtri 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 = ∅
85 ineq1 ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 = ∅ → ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ( ∅ ∩ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) )
86 0in ( ∅ ∩ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ∅
87 85 86 eqtrdi ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 = ∅ → ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ∅ )
88 84 87 mp1i ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ∅ )
89 measun ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵𝑆 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵𝑆 ) ∧ ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ∅ ) → ( 𝑀 ‘ ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) = ( ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ) +𝑒 ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) )
90 1 75 80 88 89 syl121anc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 ‘ ( 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) = ( ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ) +𝑒 ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) )
91 64 90 eqtrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥𝐴 𝐵 ) = ( ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } 𝐵 ) +𝑒 ( 𝑀 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) )
92 40 58 esumeq1d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → Σ* 𝑥𝐴 ( 𝑀𝐵 ) = Σ* 𝑥 ∈ ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∪ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) ( 𝑀𝐵 ) )
93 ctex ( { 𝑥𝐴𝐵 ∈ { ∅ } } ≼ ω → { 𝑥𝐴𝐵 ∈ { ∅ } } ∈ V )
94 11 93 syl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → { 𝑥𝐴𝐵 ∈ { ∅ } } ∈ V )
95 ctex ( { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω → { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ∈ V )
96 28 95 syl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ∈ V )
97 inrab ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∩ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) = { 𝑥𝐴 ∣ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) }
98 noel ¬ 𝐵 ∈ ∅
99 disjdif ( { ∅ } ∩ ( 𝑆 ∖ { ∅ } ) ) = ∅
100 99 eleq2i ( 𝐵 ∈ ( { ∅ } ∩ ( 𝑆 ∖ { ∅ } ) ) ↔ 𝐵 ∈ ∅ )
101 98 100 mtbir ¬ 𝐵 ∈ ( { ∅ } ∩ ( 𝑆 ∖ { ∅ } ) )
102 elin ( 𝐵 ∈ ( { ∅ } ∩ ( 𝑆 ∖ { ∅ } ) ) ↔ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) )
103 101 102 mtbi ¬ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) )
104 103 rgenw 𝑥𝐴 ¬ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) )
105 rabeq0 ( { 𝑥𝐴 ∣ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } = ∅ ↔ ∀ 𝑥𝐴 ¬ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) )
106 104 105 mpbir { 𝑥𝐴 ∣ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } = ∅
107 97 106 eqtri ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∩ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) = ∅
108 107 a1i ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∩ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) = ∅ )
109 1 adantr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
110 1 71 sylan ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ) → 𝐵𝑆 )
111 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵𝑆 ) → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
112 109 110 111 syl2anc ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ) → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
113 1 adantr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
114 20 adantl ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) )
115 114 eldifad ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝐵𝑆 )
116 113 115 111 syl2anc ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
117 40 13 29 94 96 108 112 116 esumsplit ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → Σ* 𝑥 ∈ ( { 𝑥𝐴𝐵 ∈ { ∅ } } ∪ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) ( 𝑀𝐵 ) = ( Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ( 𝑀𝐵 ) +𝑒 Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀𝐵 ) ) )
118 92 117 eqtrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → Σ* 𝑥𝐴 ( 𝑀𝐵 ) = ( Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ { ∅ } } ( 𝑀𝐵 ) +𝑒 Σ* 𝑥 ∈ { 𝑥𝐴𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀𝐵 ) ) )
119 34 91 118 3eqtr4d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐴 𝐵𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝐵 ) ) → ( 𝑀 𝑥𝐴 𝐵 ) = Σ* 𝑥𝐴 ( 𝑀𝐵 ) )