Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
2 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ { ∅ } ) ) |
3 |
2
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } → 𝐵 ∈ { ∅ } ) |
4 |
3
|
adantl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ) → 𝐵 ∈ { ∅ } ) |
5 |
4
|
ralrimiva |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∈ { ∅ } ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∈ { ∅ } ) |
7 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ⊆ 𝐴 |
8 |
|
ssct |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ⊆ 𝐴 ∧ 𝐴 ≼ ω ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ≼ ω ) |
9 |
7 8
|
mpan |
⊢ ( 𝐴 ≼ ω → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ≼ ω ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ≼ ω ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ≼ ω ) |
12 |
|
simp3r |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Disj 𝑥 ∈ 𝐴 𝐵 ) |
13 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
15 |
13 14
|
disjss1f |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ⊆ 𝐴 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ) ) |
16 |
7 12 15
|
mpsyl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Disj 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ) |
17 |
13
|
measvunilem0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∈ { ∅ } ∧ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ≼ ω ∧ Disj 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ) = Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ( 𝑀 ‘ 𝐵 ) ) |
18 |
1 6 11 16 17
|
syl112anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ) = Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ( 𝑀 ‘ 𝐵 ) ) |
19 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) ) |
20 |
19
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } → 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) |
22 |
21
|
ralrimiva |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) |
24 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ⊆ 𝐴 |
25 |
|
ssct |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ⊆ 𝐴 ∧ 𝐴 ≼ ω ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω ) |
26 |
24 25
|
mpan |
⊢ ( 𝐴 ≼ ω → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω ) |
27 |
26
|
adantr |
⊢ ( ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω ) |
28 |
27
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω ) |
29 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } |
30 |
29 14
|
disjss1f |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ⊆ 𝐴 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) |
31 |
24 12 30
|
mpsyl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Disj 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) |
32 |
29
|
measvunilem |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ∧ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω ∧ Disj 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀 ‘ 𝐵 ) ) |
33 |
1 23 28 31 32
|
syl112anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀 ‘ 𝐵 ) ) |
34 |
18 33
|
oveq12d |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ) +𝑒 ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) = ( Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ( 𝑀 ‘ 𝐵 ) +𝑒 Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀 ‘ 𝐵 ) ) ) |
35 |
|
nfv |
⊢ Ⅎ 𝑥 𝑀 ∈ ( measures ‘ 𝑆 ) |
36 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 |
37 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ≼ ω |
38 |
|
nfdisj1 |
⊢ Ⅎ 𝑥 Disj 𝑥 ∈ 𝐴 𝐵 |
39 |
37 38
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) |
40 |
35 36 39
|
nf3an |
⊢ Ⅎ 𝑥 ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) |
41 |
13 29
|
nfun |
⊢ Ⅎ 𝑥 ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) |
42 |
|
simp2 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
43 |
|
rabid2 |
⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝑆 } ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) |
44 |
42 43
|
sylibr |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → 𝐴 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝑆 } ) |
45 |
|
elun |
⊢ ( 𝐵 ∈ ( { ∅ } ∪ ( 𝑆 ∖ { ∅ } ) ) ↔ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) ) |
46 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
47 |
|
0elsiga |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆 ) |
48 |
|
snssi |
⊢ ( ∅ ∈ 𝑆 → { ∅ } ⊆ 𝑆 ) |
49 |
46 47 48
|
3syl |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → { ∅ } ⊆ 𝑆 ) |
50 |
|
undif |
⊢ ( { ∅ } ⊆ 𝑆 ↔ ( { ∅ } ∪ ( 𝑆 ∖ { ∅ } ) ) = 𝑆 ) |
51 |
49 50
|
sylib |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( { ∅ } ∪ ( 𝑆 ∖ { ∅ } ) ) = 𝑆 ) |
52 |
51
|
eleq2d |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( 𝐵 ∈ ( { ∅ } ∪ ( 𝑆 ∖ { ∅ } ) ) ↔ 𝐵 ∈ 𝑆 ) ) |
53 |
45 52
|
bitr3id |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) ↔ 𝐵 ∈ 𝑆 ) ) |
54 |
53
|
rabbidv |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝑆 } ) |
55 |
54
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝑆 } ) |
56 |
44 55
|
eqtr4d |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → 𝐴 = { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } ) |
57 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∈ { ∅ } ∨ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } |
58 |
56 57
|
eqtr4di |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → 𝐴 = ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) ) |
59 |
|
eqidd |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → 𝐵 = 𝐵 ) |
60 |
40 14 41 58 59
|
iuneq12df |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) 𝐵 ) |
61 |
60
|
fveq2d |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝑀 ‘ ∪ 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) 𝐵 ) ) |
62 |
|
iunxun |
⊢ ∪ 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) 𝐵 = ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∪ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) |
63 |
62
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) 𝐵 ) = ( 𝑀 ‘ ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∪ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) |
64 |
61 63
|
eqtrdi |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( 𝑀 ‘ ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∪ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) ) |
65 |
46
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
66 |
47
|
adantr |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ { ∅ } ) → ∅ ∈ 𝑆 ) |
67 |
|
elsni |
⊢ ( 𝐵 ∈ { ∅ } → 𝐵 = ∅ ) |
68 |
67
|
eleq1d |
⊢ ( 𝐵 ∈ { ∅ } → ( 𝐵 ∈ 𝑆 ↔ ∅ ∈ 𝑆 ) ) |
69 |
68
|
adantl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ { ∅ } ) → ( 𝐵 ∈ 𝑆 ↔ ∅ ∈ 𝑆 ) ) |
70 |
66 69
|
mpbird |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ { ∅ } ) → 𝐵 ∈ 𝑆 ) |
71 |
46 3 70
|
syl2an |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ) → 𝐵 ∈ 𝑆 ) |
72 |
71
|
ralrimiva |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∈ 𝑆 ) |
73 |
72
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∈ 𝑆 ) |
74 |
13
|
sigaclcuni |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∈ 𝑆 ∧ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ≼ ω ) → ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∈ 𝑆 ) |
75 |
65 73 11 74
|
syl3anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∈ 𝑆 ) |
76 |
21
|
eldifad |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝐵 ∈ 𝑆 ) |
77 |
76
|
ralrimiva |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ 𝑆 ) |
78 |
77
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ 𝑆 ) |
79 |
29
|
sigaclcuni |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ 𝑆 ∧ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω ) → ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ 𝑆 ) |
80 |
65 78 28 79
|
syl3anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ 𝑆 ) |
81 |
3 67
|
syl |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } → 𝐵 = ∅ ) |
82 |
81
|
iuneq2i |
⊢ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 = ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∅ |
83 |
|
iun0 |
⊢ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∅ = ∅ |
84 |
82 83
|
eqtri |
⊢ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 = ∅ |
85 |
|
ineq1 |
⊢ ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 = ∅ → ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∩ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ( ∅ ∩ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) |
86 |
|
0in |
⊢ ( ∅ ∩ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ∅ |
87 |
85 86
|
eqtrdi |
⊢ ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 = ∅ → ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∩ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ∅ ) |
88 |
84 87
|
mp1i |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∩ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ∅ ) |
89 |
|
measun |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∈ 𝑆 ∧ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ∈ 𝑆 ) ∧ ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∩ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) = ∅ ) → ( 𝑀 ‘ ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∪ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) = ( ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ) +𝑒 ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) ) |
90 |
1 75 80 88 89
|
syl121anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ( ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ∪ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) = ( ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ) +𝑒 ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) ) |
91 |
64 90
|
eqtrd |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ( ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } 𝐵 ) +𝑒 ( 𝑀 ‘ ∪ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } 𝐵 ) ) ) |
92 |
40 58
|
esumeq1d |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Σ* 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝐵 ) = Σ* 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) ( 𝑀 ‘ 𝐵 ) ) |
93 |
|
ctex |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ≼ ω → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∈ V ) |
94 |
11 93
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∈ V ) |
95 |
|
ctex |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ≼ ω → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ∈ V ) |
96 |
28 95
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ∈ V ) |
97 |
|
inrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∩ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } |
98 |
|
noel |
⊢ ¬ 𝐵 ∈ ∅ |
99 |
|
disjdif |
⊢ ( { ∅ } ∩ ( 𝑆 ∖ { ∅ } ) ) = ∅ |
100 |
99
|
eleq2i |
⊢ ( 𝐵 ∈ ( { ∅ } ∩ ( 𝑆 ∖ { ∅ } ) ) ↔ 𝐵 ∈ ∅ ) |
101 |
98 100
|
mtbir |
⊢ ¬ 𝐵 ∈ ( { ∅ } ∩ ( 𝑆 ∖ { ∅ } ) ) |
102 |
|
elin |
⊢ ( 𝐵 ∈ ( { ∅ } ∩ ( 𝑆 ∖ { ∅ } ) ) ↔ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) ) |
103 |
101 102
|
mtbi |
⊢ ¬ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) |
104 |
103
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) |
105 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) ) |
106 |
104 105
|
mpbir |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐵 ∈ { ∅ } ∧ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) } = ∅ |
107 |
97 106
|
eqtri |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∩ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) = ∅ |
108 |
107
|
a1i |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∩ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) = ∅ ) |
109 |
1
|
adantr |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
110 |
1 71
|
sylan |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ) → 𝐵 ∈ 𝑆 ) |
111 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
112 |
109 110 111
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
113 |
1
|
adantr |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
114 |
20
|
adantl |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) ) |
115 |
114
|
eldifad |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → 𝐵 ∈ 𝑆 ) |
116 |
113 115 111
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
117 |
40 13 29 94 96 108 112 116
|
esumsplit |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Σ* 𝑥 ∈ ( { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ∪ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ) ( 𝑀 ‘ 𝐵 ) = ( Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ( 𝑀 ‘ 𝐵 ) +𝑒 Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀 ‘ 𝐵 ) ) ) |
118 |
92 117
|
eqtrd |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → Σ* 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝐵 ) = ( Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ { ∅ } } ( 𝑀 ‘ 𝐵 ) +𝑒 Σ* 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ ( 𝑆 ∖ { ∅ } ) } ( 𝑀 ‘ 𝐵 ) ) ) |
119 |
34 91 118
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ∧ ( 𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = Σ* 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝐵 ) ) |