Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjss1f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| disjss1f.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | disjss1f | ⊢ ( 𝐴 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjss1f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | disjss1f.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | 1 2 | ssrmof | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃* 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
| 4 | 3 | alimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
| 5 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) | |
| 6 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
| 7 | 4 5 6 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |