Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjss1f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| disjss1f.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | disjeq1f | ⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjss1f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | disjss1f.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | eqimss2 | ⊢ ( 𝐴 = 𝐵 → 𝐵 ⊆ 𝐴 ) | |
| 4 | 2 1 | disjss1f | ⊢ ( 𝐵 ⊆ 𝐴 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| 5 | 3 4 | syl | ⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| 6 | eqimss | ⊢ ( 𝐴 = 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 7 | 1 2 | disjss1f | ⊢ ( 𝐴 ⊆ 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
| 8 | 6 7 | syl | ⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶 ) ) |
| 9 | 5 8 | impbid | ⊢ ( 𝐴 = 𝐵 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |