Metamath Proof Explorer


Theorem disjeq1f

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disjss1f.1 _xA
disjss1f.2 _xB
Assertion disjeq1f A=BDisjxACDisjxBC

Proof

Step Hyp Ref Expression
1 disjss1f.1 _xA
2 disjss1f.2 _xB
3 eqimss2 A=BBA
4 2 1 disjss1f BADisjxACDisjxBC
5 3 4 syl A=BDisjxACDisjxBC
6 eqimss A=BAB
7 1 2 disjss1f ABDisjxBCDisjxAC
8 6 7 syl A=BDisjxBCDisjxAC
9 5 8 impbid A=BDisjxACDisjxBC