Metamath Proof Explorer


Theorem disjxun0

Description: Simplify a disjoint union. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypothesis disjxun0.1 φxBC=
Assertion disjxun0 φDisjxABCDisjxAC

Proof

Step Hyp Ref Expression
1 disjxun0.1 φxBC=
2 nel02 C=¬yC
3 1 2 syl φxB¬yC
4 3 rmounid φ*xAByC*xAyC
5 4 albidv φy*xAByCy*xAyC
6 df-disj DisjxABCy*xAByC
7 df-disj DisjxACy*xAyC
8 5 6 7 3bitr4g φDisjxABCDisjxAC